Cargando…
Machine learning-guided discovery and design of non-hemolytic peptides
Reducing hurdles to clinical trials without compromising the therapeutic promises of peptide candidates becomes an essential step in peptide-based drug design. Machine-learning models are cost-effective and time-saving strategies used to predict biological activities from primary sequences. Their li...
Autores principales: | Plisson, Fabien, Ramírez-Sánchez, Obed, Martínez-Hernández, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538962/ https://www.ncbi.nlm.nih.gov/pubmed/33024236 http://dx.doi.org/10.1038/s41598-020-73644-6 |
Ejemplares similares
-
Machine Learning Guided Discovery of Non‐Hemolytic Membrane Disruptive Anticancer Peptides
por: Zakharova, Elena, et al.
Publicado: (2022) -
Machine learning designs non-hemolytic antimicrobial peptides
por: Capecchi, Alice, et al.
Publicado: (2021) -
Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery
por: Giguère, Sébastien, et al.
Publicado: (2015) -
Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning
por: Yan, Jielu, et al.
Publicado: (2022) -
Hemolytik: a database of experimentally determined hemolytic and non-hemolytic peptides
por: Gautam, Ankur, et al.
Publicado: (2014)