Cargando…

Longitudinal unzipping of 2D transition metal dichalcogenides

Unzipping of the basal plane offers a valuable pathway to uniquely control the material chemistry of 2D structures. Nonetheless, reliable unzipping has been reported only for graphene and phosphorene thus far. The single elemental nature of those materials allows a straightforward understanding of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Padmajan Sasikala, Suchithra, Singh, Yashpal, Bing, Li, Yun, Taeyoung, Koo, Sung Hwan, Jung, Yousung, Kim, Sang Ouk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538978/
https://www.ncbi.nlm.nih.gov/pubmed/33024113
http://dx.doi.org/10.1038/s41467-020-18810-0
_version_ 1783590970723401728
author Padmajan Sasikala, Suchithra
Singh, Yashpal
Bing, Li
Yun, Taeyoung
Koo, Sung Hwan
Jung, Yousung
Kim, Sang Ouk
author_facet Padmajan Sasikala, Suchithra
Singh, Yashpal
Bing, Li
Yun, Taeyoung
Koo, Sung Hwan
Jung, Yousung
Kim, Sang Ouk
author_sort Padmajan Sasikala, Suchithra
collection PubMed
description Unzipping of the basal plane offers a valuable pathway to uniquely control the material chemistry of 2D structures. Nonetheless, reliable unzipping has been reported only for graphene and phosphorene thus far. The single elemental nature of those materials allows a straightforward understanding of the chemical reaction and property modulation involved with such geometric transformations. Here we report spontaneous linear ordered unzipping of bi-elemental 2D MX(2) transition metal chalcogenides as a general route to synthesize 1D nanoribbon structures. The strained metallic phase (1T′) of MX(2) undergoes highly specific longitudinal unzipping owing to the self-linearized oxygenation at chalcogenides. Stable dispersions of 1T′ MoS(2) nanoribbons with widths of 10–120 nm and lengths up to ~4 µm are produced in water. Edge abundant 1T′ MoS(2) nanoribbons reveal the hidden potential of idealized electrocatalysis for hydrogen evolution reactions at a competitive level with the precious Pt catalyst.
format Online
Article
Text
id pubmed-7538978
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75389782020-10-19 Longitudinal unzipping of 2D transition metal dichalcogenides Padmajan Sasikala, Suchithra Singh, Yashpal Bing, Li Yun, Taeyoung Koo, Sung Hwan Jung, Yousung Kim, Sang Ouk Nat Commun Article Unzipping of the basal plane offers a valuable pathway to uniquely control the material chemistry of 2D structures. Nonetheless, reliable unzipping has been reported only for graphene and phosphorene thus far. The single elemental nature of those materials allows a straightforward understanding of the chemical reaction and property modulation involved with such geometric transformations. Here we report spontaneous linear ordered unzipping of bi-elemental 2D MX(2) transition metal chalcogenides as a general route to synthesize 1D nanoribbon structures. The strained metallic phase (1T′) of MX(2) undergoes highly specific longitudinal unzipping owing to the self-linearized oxygenation at chalcogenides. Stable dispersions of 1T′ MoS(2) nanoribbons with widths of 10–120 nm and lengths up to ~4 µm are produced in water. Edge abundant 1T′ MoS(2) nanoribbons reveal the hidden potential of idealized electrocatalysis for hydrogen evolution reactions at a competitive level with the precious Pt catalyst. Nature Publishing Group UK 2020-10-06 /pmc/articles/PMC7538978/ /pubmed/33024113 http://dx.doi.org/10.1038/s41467-020-18810-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Padmajan Sasikala, Suchithra
Singh, Yashpal
Bing, Li
Yun, Taeyoung
Koo, Sung Hwan
Jung, Yousung
Kim, Sang Ouk
Longitudinal unzipping of 2D transition metal dichalcogenides
title Longitudinal unzipping of 2D transition metal dichalcogenides
title_full Longitudinal unzipping of 2D transition metal dichalcogenides
title_fullStr Longitudinal unzipping of 2D transition metal dichalcogenides
title_full_unstemmed Longitudinal unzipping of 2D transition metal dichalcogenides
title_short Longitudinal unzipping of 2D transition metal dichalcogenides
title_sort longitudinal unzipping of 2d transition metal dichalcogenides
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538978/
https://www.ncbi.nlm.nih.gov/pubmed/33024113
http://dx.doi.org/10.1038/s41467-020-18810-0
work_keys_str_mv AT padmajansasikalasuchithra longitudinalunzippingof2dtransitionmetaldichalcogenides
AT singhyashpal longitudinalunzippingof2dtransitionmetaldichalcogenides
AT bingli longitudinalunzippingof2dtransitionmetaldichalcogenides
AT yuntaeyoung longitudinalunzippingof2dtransitionmetaldichalcogenides
AT koosunghwan longitudinalunzippingof2dtransitionmetaldichalcogenides
AT jungyousung longitudinalunzippingof2dtransitionmetaldichalcogenides
AT kimsangouk longitudinalunzippingof2dtransitionmetaldichalcogenides