Cargando…

Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models

Detalles Bibliográficos
Autores principales: Liu, Dianbo, Clemente, Leonardo, Poirier, Canelle, Ding, Xiyu, Chinazzi, Matteo, Davis, Jessica, Vespignani, Alessandro, Santillana, Mauricio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539158/
https://www.ncbi.nlm.nih.gov/pubmed/32960774
http://dx.doi.org/10.2196/23996
_version_ 1783591007314509824
author Liu, Dianbo
Clemente, Leonardo
Poirier, Canelle
Ding, Xiyu
Chinazzi, Matteo
Davis, Jessica
Vespignani, Alessandro
Santillana, Mauricio
author_facet Liu, Dianbo
Clemente, Leonardo
Poirier, Canelle
Ding, Xiyu
Chinazzi, Matteo
Davis, Jessica
Vespignani, Alessandro
Santillana, Mauricio
author_sort Liu, Dianbo
collection PubMed
description
format Online
Article
Text
id pubmed-7539158
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-75391582020-10-20 Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models Liu, Dianbo Clemente, Leonardo Poirier, Canelle Ding, Xiyu Chinazzi, Matteo Davis, Jessica Vespignani, Alessandro Santillana, Mauricio J Med Internet Res Corrigenda and Addenda JMIR Publications 2020-09-22 /pmc/articles/PMC7539158/ /pubmed/32960774 http://dx.doi.org/10.2196/23996 Text en ©Dianbo Liu, Leonardo Clemente, Canelle Poirier, Xiyu Ding, Matteo Chinazzi, Jessica Davis, Alessandro Vespignani, Mauricio Santillana. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.09.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Corrigenda and Addenda
Liu, Dianbo
Clemente, Leonardo
Poirier, Canelle
Ding, Xiyu
Chinazzi, Matteo
Davis, Jessica
Vespignani, Alessandro
Santillana, Mauricio
Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
title Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
title_full Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
title_fullStr Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
title_full_unstemmed Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
title_short Correction: Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models
title_sort correction: real-time forecasting of the covid-19 outbreak in chinese provinces: machine learning approach using novel digital data and estimates from mechanistic models
topic Corrigenda and Addenda
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539158/
https://www.ncbi.nlm.nih.gov/pubmed/32960774
http://dx.doi.org/10.2196/23996
work_keys_str_mv AT liudianbo correctionrealtimeforecastingofthecovid19outbreakinchineseprovincesmachinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels
AT clementeleonardo correctionrealtimeforecastingofthecovid19outbreakinchineseprovincesmachinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels
AT poiriercanelle correctionrealtimeforecastingofthecovid19outbreakinchineseprovincesmachinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels
AT dingxiyu correctionrealtimeforecastingofthecovid19outbreakinchineseprovincesmachinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels
AT chinazzimatteo correctionrealtimeforecastingofthecovid19outbreakinchineseprovincesmachinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels
AT davisjessica correctionrealtimeforecastingofthecovid19outbreakinchineseprovincesmachinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels
AT vespignanialessandro correctionrealtimeforecastingofthecovid19outbreakinchineseprovincesmachinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels
AT santillanamauricio correctionrealtimeforecastingofthecovid19outbreakinchineseprovincesmachinelearningapproachusingnoveldigitaldataandestimatesfrommechanisticmodels