Cargando…
Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With Testicular Cancer
BACKGROUND: Cisplatin-based chemotherapy increases the risk of cardiovascular and renal disease. OBJECTIVES: We aimed to define the time course, pathophysiology, and approaches to prevent cardiovascular disease associated with cisplatin-based chemotherapy. METHODS: Two cohorts of patients with a his...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539369/ https://www.ncbi.nlm.nih.gov/pubmed/33043304 http://dx.doi.org/10.1016/j.jaccao.2020.06.004 |
_version_ | 1783591040665518080 |
---|---|
author | Cameron, Alan C. McMahon, Kelly Hall, Mark Neves, Karla B. Rios, Francisco J. Montezano, Augusto C. Welsh, Paul Waterston, Ashita White, Jeff Mark, Patrick B. Touyz, Rhian M. Lang, Ninian N. |
author_facet | Cameron, Alan C. McMahon, Kelly Hall, Mark Neves, Karla B. Rios, Francisco J. Montezano, Augusto C. Welsh, Paul Waterston, Ashita White, Jeff Mark, Patrick B. Touyz, Rhian M. Lang, Ninian N. |
author_sort | Cameron, Alan C. |
collection | PubMed |
description | BACKGROUND: Cisplatin-based chemotherapy increases the risk of cardiovascular and renal disease. OBJECTIVES: We aimed to define the time course, pathophysiology, and approaches to prevent cardiovascular disease associated with cisplatin-based chemotherapy. METHODS: Two cohorts of patients with a history of testicular cancer (n = 53) were recruited. Cohort 1 consisted of 27 men undergoing treatment with: 1) surveillance; 2) 1 to 2 cycles of bleomycin, etoposide, and cisplatin (BEP) chemotherapy (low-intensity cisplatin); or 3) 3 to 4 cycles of BEP (high-intensity cisplatin). Endothelial function (percentage flow-mediated dilatation) and cardiovascular biomarkers were assessed at 6 visits over 9 months. Cohort 2 consisted of 26 men previously treated 1 to 7 years ago with surveillance or 3 to 4 cycles BEP. Vasomotor and fibrinolytic responses to bradykinin, acetylcholine, and sodium nitroprusside were evaluated using forearm venous occlusion plethysmography. RESULTS: In cohort 1, the percentage flow-mediated dilatation decreased 24 h after the first cisplatin dose in patients managed with 3 to 4 cycles BEP (10.9 ± 0.9 vs. 16.7 ± 1.6; p < 0.01) but was unchanged from baseline thereafter. Six weeks after starting 3 to 4 cycles BEP, there were increased serum cholesterol levels (7.2 ± 0.5 mmol/l vs. 5.5 ± 0.2 mmol/l; p = 0.01), hemoglobin A1c (41.8 ± 2.0 mmol/l vs. 35.5 ± 1.2 mmol/l; p < 0.001), von Willebrand factor antigen (62.4 ± 5.4 mmol/l vs. 45.2 ± 2.8 mmol/l; p = 0.048) and cystatin C (0.91 ± 0.07 mmol/l vs. 0.65 ± 0.09 mmol/l; p < 0.01). In cohort 2, intra-arterial bradykinin, acetylcholine, and sodium nitroprusside caused dose-dependent vasodilation (p < 0.0001). Vasomotor responses, endogenous fibrinolytic factor release, and cardiovascular biomarkers were not different in patients managed with 3 to 4 cycles of BEP versus surveillance. CONCLUSIONS: Cisplatin-based chemotherapy induces acute and transient endothelial dysfunction, dyslipidemia, hyperglycemia, and nephrotoxicity in the early phases of treatment. Cardiovascular and renal protective strategies should target the early perichemotherapy period. (Clinical Characterisation of the Vascular Effects of Cis-platinum Based Chemotherapy in Patients With Testicular Cancer [VECTOR], NCT03557177; Intermediate and Long Term Vascular Effects of Cisplatin in Patients With Testicular Cancer [INTELLECT], NCT03557164) |
format | Online Article Text |
id | pubmed-7539369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75393692020-10-09 Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With Testicular Cancer Cameron, Alan C. McMahon, Kelly Hall, Mark Neves, Karla B. Rios, Francisco J. Montezano, Augusto C. Welsh, Paul Waterston, Ashita White, Jeff Mark, Patrick B. Touyz, Rhian M. Lang, Ninian N. JACC CardioOncol Original Research BACKGROUND: Cisplatin-based chemotherapy increases the risk of cardiovascular and renal disease. OBJECTIVES: We aimed to define the time course, pathophysiology, and approaches to prevent cardiovascular disease associated with cisplatin-based chemotherapy. METHODS: Two cohorts of patients with a history of testicular cancer (n = 53) were recruited. Cohort 1 consisted of 27 men undergoing treatment with: 1) surveillance; 2) 1 to 2 cycles of bleomycin, etoposide, and cisplatin (BEP) chemotherapy (low-intensity cisplatin); or 3) 3 to 4 cycles of BEP (high-intensity cisplatin). Endothelial function (percentage flow-mediated dilatation) and cardiovascular biomarkers were assessed at 6 visits over 9 months. Cohort 2 consisted of 26 men previously treated 1 to 7 years ago with surveillance or 3 to 4 cycles BEP. Vasomotor and fibrinolytic responses to bradykinin, acetylcholine, and sodium nitroprusside were evaluated using forearm venous occlusion plethysmography. RESULTS: In cohort 1, the percentage flow-mediated dilatation decreased 24 h after the first cisplatin dose in patients managed with 3 to 4 cycles BEP (10.9 ± 0.9 vs. 16.7 ± 1.6; p < 0.01) but was unchanged from baseline thereafter. Six weeks after starting 3 to 4 cycles BEP, there were increased serum cholesterol levels (7.2 ± 0.5 mmol/l vs. 5.5 ± 0.2 mmol/l; p = 0.01), hemoglobin A1c (41.8 ± 2.0 mmol/l vs. 35.5 ± 1.2 mmol/l; p < 0.001), von Willebrand factor antigen (62.4 ± 5.4 mmol/l vs. 45.2 ± 2.8 mmol/l; p = 0.048) and cystatin C (0.91 ± 0.07 mmol/l vs. 0.65 ± 0.09 mmol/l; p < 0.01). In cohort 2, intra-arterial bradykinin, acetylcholine, and sodium nitroprusside caused dose-dependent vasodilation (p < 0.0001). Vasomotor responses, endogenous fibrinolytic factor release, and cardiovascular biomarkers were not different in patients managed with 3 to 4 cycles of BEP versus surveillance. CONCLUSIONS: Cisplatin-based chemotherapy induces acute and transient endothelial dysfunction, dyslipidemia, hyperglycemia, and nephrotoxicity in the early phases of treatment. Cardiovascular and renal protective strategies should target the early perichemotherapy period. (Clinical Characterisation of the Vascular Effects of Cis-platinum Based Chemotherapy in Patients With Testicular Cancer [VECTOR], NCT03557177; Intermediate and Long Term Vascular Effects of Cisplatin in Patients With Testicular Cancer [INTELLECT], NCT03557164) Elsevier 2020-09-15 /pmc/articles/PMC7539369/ /pubmed/33043304 http://dx.doi.org/10.1016/j.jaccao.2020.06.004 Text en © 2020 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Research Cameron, Alan C. McMahon, Kelly Hall, Mark Neves, Karla B. Rios, Francisco J. Montezano, Augusto C. Welsh, Paul Waterston, Ashita White, Jeff Mark, Patrick B. Touyz, Rhian M. Lang, Ninian N. Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With Testicular Cancer |
title | Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With Testicular Cancer |
title_full | Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With Testicular Cancer |
title_fullStr | Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With Testicular Cancer |
title_full_unstemmed | Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With Testicular Cancer |
title_short | Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients With Testicular Cancer |
title_sort | comprehensive characterization of the vascular effects of cisplatin-based chemotherapy in patients with testicular cancer |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539369/ https://www.ncbi.nlm.nih.gov/pubmed/33043304 http://dx.doi.org/10.1016/j.jaccao.2020.06.004 |
work_keys_str_mv | AT cameronalanc comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT mcmahonkelly comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT hallmark comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT neveskarlab comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT riosfranciscoj comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT montezanoaugustoc comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT welshpaul comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT waterstonashita comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT whitejeff comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT markpatrickb comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT touyzrhianm comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer AT langniniann comprehensivecharacterizationofthevasculareffectsofcisplatinbasedchemotherapyinpatientswithtesticularcancer |