Cargando…
Convergence of optimal expected utility for a sequence of discrete‐time markets
We examine Kreps' conjecture that optimal expected utility in the classic Black–Scholes–Merton (BSM) economy is the limit of optimal expected utility for a sequence of discrete‐time economies that “approach” the BSM economy in a natural sense: The nth discrete‐time economy is generated by a sca...
Autores principales: | Kreps, David M., Schachermayer, Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540176/ https://www.ncbi.nlm.nih.gov/pubmed/33041535 http://dx.doi.org/10.1111/mafi.12277 |
Ejemplares similares
-
Convergence of optimal expected utility for a sequence of binomial models
por: Hubalek, Friedrich, et al.
Publicado: (2021) -
Discretization and MCMC convergence assessment
por: Robert, Christian
Publicado: (1998) -
Convergence Time towards Periodic Orbits in Discrete Dynamical Systems
por: San Martín, Jesús, et al.
Publicado: (2014) -
The future of sequencing: convergence of intelligent design and market Darwinism
por: Greenleaf, William J, et al.
Publicado: (2014) -
A note on the convergence of discretized dynamic iteration
por: Bjørhus, M
Publicado: (1994)