Cargando…

Exposure to environmental bisphenol A inhibits HTR-8/SVneo cell migration and invasion

Environmental pollutants, such as bisphenol A (BPA) have recently been implicated in the development of adverse birth outcomes. However, the underlying teratogenic mechanisms remain unclear. We investigated the effects of BPA on the migration and invasion of human primary extravillous trophoblast HT...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Pu, Ru, Dongqing, Li, Xiaoqian, Shi, Dongyan, Zhang, Mingshun, Xu, Qing, Zhou, Hong, Wen, Shuang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Editorial Department of Journal of Biomedical Research 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540237/
https://www.ncbi.nlm.nih.gov/pubmed/32981897
http://dx.doi.org/10.7555/JBR.34.20200013
Descripción
Sumario:Environmental pollutants, such as bisphenol A (BPA) have recently been implicated in the development of adverse birth outcomes. However, the underlying teratogenic mechanisms remain unclear. We investigated the effects of BPA on the migration and invasion of human primary extravillous trophoblast HTR-8/SVneo cells. Our results indicated that BPA reduced cell migration and invasion. Moreover, it altered the ratio of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) by downregulating MMP-2 and MMP-9, and upregulating TIMP-1 and TIMP-2. Furthermore, BPA suppressed integrin β1, integrin α5, and vimentin. Interestingly, BPA-induced invasion was partially restored by G15, a membrane G-protein-coupled estrogen receptor 30 antagonist. We further revealed that 42 proteins were differentially expressed by mass spectrometry analysis, which could be divided into three categories based on gene ontology including biological process, cellular component, and molecular function. These results suggest that BPA reduces HTR-8/SVneo cell migration and invasion by downregulating MMP-2 and MMP-9, up-regulating TIMP-1 and TIMP-2, and suppressing adhesion molecules.