Cargando…
Robust risk aggregation with neural networks
We consider settings in which the distribution of a multivariate random variable is partly ambiguous. We assume the ambiguity lies on the level of the dependence structure, and that the marginal distributions are known. Furthermore, a current best guess for the distribution, called reference measure...
Autores principales: | Eckstein, Stephan, Kupper, Michael, Pohl, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540357/ https://www.ncbi.nlm.nih.gov/pubmed/33041536 http://dx.doi.org/10.1111/mafi.12280 |
Ejemplares similares
-
Winsorization for Robust Bayesian Neural Networks
por: Sharma, Somya, et al.
Publicado: (2021) -
The geometry of robustness in spiking neural networks
por: Calaim, Nuno, et al.
Publicado: (2022) -
Robust Generation of Person-Specific, Synchronously Active Neuronal Networks Using Purely Isogenic Human iPSC-3D Neural Aggregate Cultures
por: Izsak, Julia, et al.
Publicado: (2019) -
Robust high-dimensional memory-augmented neural networks
por: Karunaratne, Geethan, et al.
Publicado: (2021) -
Robustness of convolutional neural networks to physiological electrocardiogram noise
por: Venton, J., et al.
Publicado: (2021)