Cargando…
Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin
Lignin may serve as a renewable feedstock for the production of chemicals and fuels if mild, scalable processes for its depolymerization can be devised. The use of small organic thiols represents a bioinspired strategy to cleave the β‐O‐4 bond, the most common linkage in lignin. In the present study...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540407/ https://www.ncbi.nlm.nih.gov/pubmed/32668064 http://dx.doi.org/10.1002/cssc.202001238 |
_version_ | 1783591201185726464 |
---|---|
author | Klinger, Grace E. Zhou, Yuting Foote, Juliet A. Wester, Abby M. Cui, Yanbin Alherech, Manar Stahl, Shannon S. Jackson, James E. Hegg, Eric L. |
author_facet | Klinger, Grace E. Zhou, Yuting Foote, Juliet A. Wester, Abby M. Cui, Yanbin Alherech, Manar Stahl, Shannon S. Jackson, James E. Hegg, Eric L. |
author_sort | Klinger, Grace E. |
collection | PubMed |
description | Lignin may serve as a renewable feedstock for the production of chemicals and fuels if mild, scalable processes for its depolymerization can be devised. The use of small organic thiols represents a bioinspired strategy to cleave the β‐O‐4 bond, the most common linkage in lignin. In the present study, synthetic β‐O‐4 linked polymers were treated with organic thiols, yielding up to 90 % cleaved monomer products. Lignin extracted from poplar was also treated with organic thiols resulting in molecular weight reductions as high as 65 % (M (n)) in oxidized lignin. Thiol‐based cleavage of other lignin linkages was also explored in small‐molecule model systems to uncover additional potential pathways by which thiols might depolymerize lignin. The success of thiol‐mediated cleavage on model dimers, polymers, and biomass‐derived lignin illustrates the potential utility of small redox‐active molecules to penetrate complex polymer matrices for depolymerization and subsequent valorization of lignin into fuels and chemicals. |
format | Online Article Text |
id | pubmed-7540407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75404072020-10-09 Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin Klinger, Grace E. Zhou, Yuting Foote, Juliet A. Wester, Abby M. Cui, Yanbin Alherech, Manar Stahl, Shannon S. Jackson, James E. Hegg, Eric L. ChemSusChem Communications Lignin may serve as a renewable feedstock for the production of chemicals and fuels if mild, scalable processes for its depolymerization can be devised. The use of small organic thiols represents a bioinspired strategy to cleave the β‐O‐4 bond, the most common linkage in lignin. In the present study, synthetic β‐O‐4 linked polymers were treated with organic thiols, yielding up to 90 % cleaved monomer products. Lignin extracted from poplar was also treated with organic thiols resulting in molecular weight reductions as high as 65 % (M (n)) in oxidized lignin. Thiol‐based cleavage of other lignin linkages was also explored in small‐molecule model systems to uncover additional potential pathways by which thiols might depolymerize lignin. The success of thiol‐mediated cleavage on model dimers, polymers, and biomass‐derived lignin illustrates the potential utility of small redox‐active molecules to penetrate complex polymer matrices for depolymerization and subsequent valorization of lignin into fuels and chemicals. John Wiley and Sons Inc. 2020-08-07 2020-09-07 /pmc/articles/PMC7540407/ /pubmed/32668064 http://dx.doi.org/10.1002/cssc.202001238 Text en © 2020 The Authors. Published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Klinger, Grace E. Zhou, Yuting Foote, Juliet A. Wester, Abby M. Cui, Yanbin Alherech, Manar Stahl, Shannon S. Jackson, James E. Hegg, Eric L. Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin |
title | Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin |
title_full | Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin |
title_fullStr | Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin |
title_full_unstemmed | Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin |
title_short | Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin |
title_sort | nucleophilic thiols reductively cleave ether linkages in lignin model polymers and lignin |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540407/ https://www.ncbi.nlm.nih.gov/pubmed/32668064 http://dx.doi.org/10.1002/cssc.202001238 |
work_keys_str_mv | AT klingergracee nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin AT zhouyuting nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin AT footejulieta nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin AT westerabbym nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin AT cuiyanbin nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin AT alherechmanar nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin AT stahlshannons nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin AT jacksonjamese nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin AT heggericl nucleophilicthiolsreductivelycleaveetherlinkagesinligninmodelpolymersandlignin |