Cargando…

Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity

Many interesting target guest molecules have low symmetry, yet most methods for synthesising hosts result in highly symmetrical capsules. Methods of generating lower symmetry pores are thus required to maximise the binding affinity in host–guest complexes. Herein, we use mixtures of tetraaldehyde bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Abet, Valentina, Szczypiński, Filip T., Little, Marc A., Santolini, Valentina, Jones, Christopher D., Evans, Robert, Wilson, Craig, Wu, Xiaofeng, Thorne, Michael F., Bennison, Michael J., Cui, Peng, Cooper, Andrew I., Jelfs, Kim E., Slater, Anna G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540416/
https://www.ncbi.nlm.nih.gov/pubmed/32542926
http://dx.doi.org/10.1002/anie.202007571
_version_ 1783591203312238592
author Abet, Valentina
Szczypiński, Filip T.
Little, Marc A.
Santolini, Valentina
Jones, Christopher D.
Evans, Robert
Wilson, Craig
Wu, Xiaofeng
Thorne, Michael F.
Bennison, Michael J.
Cui, Peng
Cooper, Andrew I.
Jelfs, Kim E.
Slater, Anna G.
author_facet Abet, Valentina
Szczypiński, Filip T.
Little, Marc A.
Santolini, Valentina
Jones, Christopher D.
Evans, Robert
Wilson, Craig
Wu, Xiaofeng
Thorne, Michael F.
Bennison, Michael J.
Cui, Peng
Cooper, Andrew I.
Jelfs, Kim E.
Slater, Anna G.
author_sort Abet, Valentina
collection PubMed
description Many interesting target guest molecules have low symmetry, yet most methods for synthesising hosts result in highly symmetrical capsules. Methods of generating lower symmetry pores are thus required to maximise the binding affinity in host–guest complexes. Herein, we use mixtures of tetraaldehyde building blocks with cyclohexanediamine to access low‐symmetry imine cages. Whether a low‐energy cage is isolated can be correctly predicted from the thermodynamic preference observed in computational models. The stability of the observed structures depends on the geometrical match of the aldehyde building blocks. One bent aldehyde stands out as unable to assemble into high‐symmetry cages‐and the same aldehyde generates low‐symmetry socially self‐sorted cages when combined with a linear aldehyde. We exploit this finding to synthesise a family of low‐symmetry cages containing heteroatoms, illustrating that pores of varying geometries and surface chemistries may be reliably accessed through computational prediction and self‐sorting.
format Online
Article
Text
id pubmed-7540416
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-75404162020-10-09 Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity Abet, Valentina Szczypiński, Filip T. Little, Marc A. Santolini, Valentina Jones, Christopher D. Evans, Robert Wilson, Craig Wu, Xiaofeng Thorne, Michael F. Bennison, Michael J. Cui, Peng Cooper, Andrew I. Jelfs, Kim E. Slater, Anna G. Angew Chem Int Ed Engl Research Articles Many interesting target guest molecules have low symmetry, yet most methods for synthesising hosts result in highly symmetrical capsules. Methods of generating lower symmetry pores are thus required to maximise the binding affinity in host–guest complexes. Herein, we use mixtures of tetraaldehyde building blocks with cyclohexanediamine to access low‐symmetry imine cages. Whether a low‐energy cage is isolated can be correctly predicted from the thermodynamic preference observed in computational models. The stability of the observed structures depends on the geometrical match of the aldehyde building blocks. One bent aldehyde stands out as unable to assemble into high‐symmetry cages‐and the same aldehyde generates low‐symmetry socially self‐sorted cages when combined with a linear aldehyde. We exploit this finding to synthesise a family of low‐symmetry cages containing heteroatoms, illustrating that pores of varying geometries and surface chemistries may be reliably accessed through computational prediction and self‐sorting. John Wiley and Sons Inc. 2020-07-16 2020-09-14 /pmc/articles/PMC7540416/ /pubmed/32542926 http://dx.doi.org/10.1002/anie.202007571 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Abet, Valentina
Szczypiński, Filip T.
Little, Marc A.
Santolini, Valentina
Jones, Christopher D.
Evans, Robert
Wilson, Craig
Wu, Xiaofeng
Thorne, Michael F.
Bennison, Michael J.
Cui, Peng
Cooper, Andrew I.
Jelfs, Kim E.
Slater, Anna G.
Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity
title Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity
title_full Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity
title_fullStr Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity
title_full_unstemmed Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity
title_short Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity
title_sort inducing social self‐sorting in organic cages to tune the shape of the internal cavity
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540416/
https://www.ncbi.nlm.nih.gov/pubmed/32542926
http://dx.doi.org/10.1002/anie.202007571
work_keys_str_mv AT abetvalentina inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT szczypinskifilipt inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT littlemarca inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT santolinivalentina inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT joneschristopherd inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT evansrobert inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT wilsoncraig inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT wuxiaofeng inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT thornemichaelf inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT bennisonmichaelj inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT cuipeng inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT cooperandrewi inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT jelfskime inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity
AT slaterannag inducingsocialselfsortinginorganiccagestotunetheshapeoftheinternalcavity