Cargando…

Reprogramming Urine‐Derived Cells using Commercially Available Self‐Replicative RNA and a Single Electroporation

We describe a protocol for efficient generation of human‐induced pluripotent stem cells (hiPSCs) from urine‐derived cells (UDCs) obtained from adult donors using self‐replicative RNA containing the reprogramming factors OCT3/4, SOX2, KLF4, GLIS1, and c‐MYC (ReproRNA‐OKSGM). After electroporation, tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Bouma, Marga J., Arendzen, Christiaan H., Mummery, Christine L., Mikkers, Harald, Freund, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540473/
https://www.ncbi.nlm.nih.gov/pubmed/32956580
http://dx.doi.org/10.1002/cpsc.124
Descripción
Sumario:We describe a protocol for efficient generation of human‐induced pluripotent stem cells (hiPSCs) from urine‐derived cells (UDCs) obtained from adult donors using self‐replicative RNA containing the reprogramming factors OCT3/4, SOX2, KLF4, GLIS1, and c‐MYC (ReproRNA‐OKSGM). After electroporation, transfection efficiency is quantified by measuring OCT3/4‐expressing UDCs using flow cytometry and should be ≥0.1%. hiPSC colonies emerge within 3 weeks after transfection and express multiple pluripotency markers. Moreover, the UDC‐derived hiPSCs are able to differentiate into cells of all three germ layers and display normal karyotypes. ReproRNA‐OKSGM is available commercially and only requires a single transfection step so that the protocol is readily accessible, as well as straightforward. In addition to a detailed step‐by‐step description for generating clonal hiPSCs from UDCs using ReproRNA‐OKSGM, we provide guidance for basic pluripotency characterization of the hiPSC lines. © 2020 The Authors. Basic Protocol: Reprogramming of urine‐derived cells using ReproRNA‐OKSGM Support Protocol 1: Determination of the pluripotency status of hiPSCs by flow cytometry Support Protocol 2: Characterization of functional pluripotency of hiPSCs