Cargando…
Application of Whole‐Genome Sequences and Machine Learning in Source Attribution of Salmonella Typhimurium
Prevention of the emergence and spread of foodborne diseases is an important prerequisite for the improvement of public health. Source attribution models link sporadic human cases of a specific illness to food sources and animal reservoirs. With the next generation sequencing technology, it is possi...
Autores principales: | Munck, Nanna, Njage, Patrick Murigu Kamau, Leekitcharoenphon, Pimlapas, Litrup, Eva, Hald, Tine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540586/ https://www.ncbi.nlm.nih.gov/pubmed/32515055 http://dx.doi.org/10.1111/risa.13510 |
Ejemplares similares
-
Four European Salmonella Typhimurium datasets collected to develop WGS-based source attribution methods
por: Munck, Nanna, et al.
Publicado: (2020) -
Network Approach to Source Attribution of Salmonella enterica Serovar Typhimurium and Its Monophasic Variant
por: Merlotti, Alessandra, et al.
Publicado: (2020) -
Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next‐Generation Sequencing Data
por: Njage, Patrick Murigu Kamau, et al.
Publicado: (2018) -
Quantitative Microbial Risk Assessment Based on Whole Genome Sequencing Data: Case of Listeria monocytogenes
por: Njage, Patrick Murigu Kamau, et al.
Publicado: (2020) -
Source Attribution of Human Campylobacteriosis Using Whole-Genome Sequencing Data and Network Analysis
por: Wainaina, Lynda, et al.
Publicado: (2022)