Cargando…

Matching expert range maps with species distribution model predictions

Species’ range maps based on expert opinion are a critical resource for conservation planning. Expert maps are usually accompanied by species descriptions that specify sources of internal range heterogeneity, such as habitat associations, but these are rarely considered when using expert maps for an...

Descripción completa

Detalles Bibliográficos
Autores principales: Mainali, Kumar, Hefley, Trevor, Ries, Leslie, Fagan, William F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540670/
https://www.ncbi.nlm.nih.gov/pubmed/32115748
http://dx.doi.org/10.1111/cobi.13492
Descripción
Sumario:Species’ range maps based on expert opinion are a critical resource for conservation planning. Expert maps are usually accompanied by species descriptions that specify sources of internal range heterogeneity, such as habitat associations, but these are rarely considered when using expert maps for analyses. We developed a quantitative metric (expert score) to evaluate the agreement between an expert map and a habitat probability surface obtained from a species distribution model. This method rewards both the avoidance of unsuitable sites and the inclusion of suitable sites in the expert map. We obtained expert maps of 330 butterfly species from each of 2 widely used North American sources (Glassberg [1999, 2001] and Scott [1986]) and computed species‐wise expert scores for each. Overall, the Glassberg maps secured higher expert scores than Scott (0.61 and 0.41, respectively) due to the specific rules (e.g., Glassberg only included regions where the species was known to reproduce whereas Scott included all areas a species expanded to each year) they used to include or exclude areas from ranges. The predictive performance of expert maps was almost always hampered by the inclusion of unsuitable sites, rather than by exclusion of suitable sites (deviance outside of expert maps was extremely low). Map topology was the primary predictor of expert performance rather than any factor related to species characteristics such as mobility. Given the heterogeneity and discontinuity of suitable landscapes, expert maps drawn with more detail are more likely to agree with species distribution models and thus minimize both commission and omission errors.