Cargando…

Dielectric and energy storage properties of Bi(2)O(3)-B(2)O(3)-SiO(2) doped Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) lead-free glass-ceramics

A sol–gel method is employed for preparing high quality lead-free glass-ceramic samples (1 − x)BCZT-xBBS—incorporating Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) (BCZT) powder and Bi(2)O(3)-B(2)O(3)-SiO(2) (BBS) glass-doped additives with different values of x (x = 0, 0.05, 0.1, 0.15). Systematic investigat...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yaohui, Chen, Daihua, Meng, Liufang, Wan, Lingyu, Yao, Huilu, Zhai, Junyi, Yuan, Changlai, Talwar, Devki N., Feng, Zhe Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540749/
https://www.ncbi.nlm.nih.gov/pubmed/33047007
http://dx.doi.org/10.1098/rsos.191822
_version_ 1783591267474604032
author Chen, Yaohui
Chen, Daihua
Meng, Liufang
Wan, Lingyu
Yao, Huilu
Zhai, Junyi
Yuan, Changlai
Talwar, Devki N.
Feng, Zhe Chuan
author_facet Chen, Yaohui
Chen, Daihua
Meng, Liufang
Wan, Lingyu
Yao, Huilu
Zhai, Junyi
Yuan, Changlai
Talwar, Devki N.
Feng, Zhe Chuan
author_sort Chen, Yaohui
collection PubMed
description A sol–gel method is employed for preparing high quality lead-free glass-ceramic samples (1 − x)BCZT-xBBS—incorporating Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) (BCZT) powder and Bi(2)O(3)-B(2)O(3)-SiO(2) (BBS) glass-doped additives with different values of x (x = 0, 0.05, 0.1, 0.15). Systematic investigations are performed to comprehend the structural, dielectric and energy storage characteristics using X-ray diffraction, field-emission scanning electron microscopy, impedance and ferroelectric analyser methods. With appropriate BBS doping (x), many fundamental traits including breakdown strength, dielectric loss and energy storage density have shown significant improvements. Low doping-level samples x < 0.1 have retained the pure perovskite phase while a second glass phase appeared in samples with x ≥ 0.1. As the doping level (0.1 ≥ x > 0) is increased, the average grain size decreased to become better homogeneous materials with improved breakdown energy strengths. Excessive addition of BBS (x = 0.15) causes negative effects on microstructures and other traits. The glass-ceramic sample 0.95BCZT-0.05BBS exhibits excellent dielectric permittivity and temperature stability, with the highest energy storage density of 0.3907 J cm(−3) at 130 kV cm(−1). These results provide good reference to develop lead-free ceramics of high energy storage density.
format Online
Article
Text
id pubmed-7540749
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-75407492020-10-11 Dielectric and energy storage properties of Bi(2)O(3)-B(2)O(3)-SiO(2) doped Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) lead-free glass-ceramics Chen, Yaohui Chen, Daihua Meng, Liufang Wan, Lingyu Yao, Huilu Zhai, Junyi Yuan, Changlai Talwar, Devki N. Feng, Zhe Chuan R Soc Open Sci Chemistry A sol–gel method is employed for preparing high quality lead-free glass-ceramic samples (1 − x)BCZT-xBBS—incorporating Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) (BCZT) powder and Bi(2)O(3)-B(2)O(3)-SiO(2) (BBS) glass-doped additives with different values of x (x = 0, 0.05, 0.1, 0.15). Systematic investigations are performed to comprehend the structural, dielectric and energy storage characteristics using X-ray diffraction, field-emission scanning electron microscopy, impedance and ferroelectric analyser methods. With appropriate BBS doping (x), many fundamental traits including breakdown strength, dielectric loss and energy storage density have shown significant improvements. Low doping-level samples x < 0.1 have retained the pure perovskite phase while a second glass phase appeared in samples with x ≥ 0.1. As the doping level (0.1 ≥ x > 0) is increased, the average grain size decreased to become better homogeneous materials with improved breakdown energy strengths. Excessive addition of BBS (x = 0.15) causes negative effects on microstructures and other traits. The glass-ceramic sample 0.95BCZT-0.05BBS exhibits excellent dielectric permittivity and temperature stability, with the highest energy storage density of 0.3907 J cm(−3) at 130 kV cm(−1). These results provide good reference to develop lead-free ceramics of high energy storage density. The Royal Society 2020-09-16 /pmc/articles/PMC7540749/ /pubmed/33047007 http://dx.doi.org/10.1098/rsos.191822 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Chemistry
Chen, Yaohui
Chen, Daihua
Meng, Liufang
Wan, Lingyu
Yao, Huilu
Zhai, Junyi
Yuan, Changlai
Talwar, Devki N.
Feng, Zhe Chuan
Dielectric and energy storage properties of Bi(2)O(3)-B(2)O(3)-SiO(2) doped Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) lead-free glass-ceramics
title Dielectric and energy storage properties of Bi(2)O(3)-B(2)O(3)-SiO(2) doped Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) lead-free glass-ceramics
title_full Dielectric and energy storage properties of Bi(2)O(3)-B(2)O(3)-SiO(2) doped Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) lead-free glass-ceramics
title_fullStr Dielectric and energy storage properties of Bi(2)O(3)-B(2)O(3)-SiO(2) doped Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) lead-free glass-ceramics
title_full_unstemmed Dielectric and energy storage properties of Bi(2)O(3)-B(2)O(3)-SiO(2) doped Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) lead-free glass-ceramics
title_short Dielectric and energy storage properties of Bi(2)O(3)-B(2)O(3)-SiO(2) doped Ba(0.85)Ca(0.15)Zr(0.1)Ti(0.9)O(3) lead-free glass-ceramics
title_sort dielectric and energy storage properties of bi(2)o(3)-b(2)o(3)-sio(2) doped ba(0.85)ca(0.15)zr(0.1)ti(0.9)o(3) lead-free glass-ceramics
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540749/
https://www.ncbi.nlm.nih.gov/pubmed/33047007
http://dx.doi.org/10.1098/rsos.191822
work_keys_str_mv AT chenyaohui dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics
AT chendaihua dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics
AT mengliufang dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics
AT wanlingyu dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics
AT yaohuilu dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics
AT zhaijunyi dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics
AT yuanchanglai dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics
AT talwardevkin dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics
AT fengzhechuan dielectricandenergystoragepropertiesofbi2o3b2o3sio2dopedba085ca015zr01ti09o3leadfreeglassceramics