Cargando…
Growth of carbon nanofibres on molybdenum carbide nanowires and their self-decoration with noble-metal nanoparticles
High specific surface area makes carbon nanofibres suitable for catalyst support. Here we report on optimization of carbon nanofibre (CNF) growth on molybdenum carbide nanowires (MoCNW) by direct carburization of [Formula: see text] nanowire bundles. Typical CNFs obtained by this method are several...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540782/ https://www.ncbi.nlm.nih.gov/pubmed/33047039 http://dx.doi.org/10.1098/rsos.200783 |
Sumario: | High specific surface area makes carbon nanofibres suitable for catalyst support. Here we report on optimization of carbon nanofibre (CNF) growth on molybdenum carbide nanowires (MoCNW) by direct carburization of [Formula: see text] nanowire bundles. Typical CNFs obtained by this method are several hundreds of nanometres long at a diameter of 10–20 nm. We show that nanofibre growth does not depend on the initial morphology of the nanowires: nanofibres grow on individual bundles of MoCNW, on dense networks of nanowires deposited on silicon substrate, and on free-standing nanowire foils. We find that carbon nanofibres remain firmly attached to the nanowires even if they are modified into [Formula: see text] and further into [Formula: see text] nanowires. The method thus enables production of a novel hybrid material composed of [Formula: see text] nanowires densely covered with carbon nanofibres. We have additionally shown that the obtained CNFs can easily be self-decorated with platinum nanoparticles with diameters of several nanometres directly from water solution at room temperature without reducing agents. Such efficient synthesis and decoration process yield hybrid platinum/CNF/molybdenum-based NW materials, which are a promising material for a wide range of possible future applications, including sensitive sensorics and improved catalysis. |
---|