Cargando…
Information-theoretic measures for nonlinear causality detection: application to social media sentiment and cryptocurrency prices
Information transfer between time series is calculated using the asymmetric information-theoretic measure known as transfer entropy. Geweke’s autoregressive formulation of Granger causality is used to compute linear transfer entropy, and Schreiber’s general, non-parametric, information-theoretic for...
Autores principales: | Keskin, Z., Aste, T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540793/ https://www.ncbi.nlm.nih.gov/pubmed/33047046 http://dx.doi.org/10.1098/rsos.200863 |
Ejemplares similares
-
LSTM-based sentiment analysis for stock price forecast
por: Ko, Ching-Ru, et al.
Publicado: (2021) -
Understanding heterogeneity of investor sentiment on social media: A structural topic modeling approach
por: Ji, Rongjiao, et al.
Publicado: (2022) -
Explainable stock prices prediction from financial news articles using sentiment analysis
por: Gite, Shilpa, et al.
Publicado: (2021) -
Harvesting social media sentiment analysis to enhance stock market prediction using deep learning
por: Mehta, Pooja, et al.
Publicado: (2021) -
Stock price movement prediction based on Stocktwits investor sentiment using FinBERT and ensemble SVM
por: Liu, Jin-Xian, et al.
Publicado: (2023)