Cargando…
Dissecting the Tectal Output Channels for Orienting and Defense Responses
Electrical stimulation and lesion experiments in 1980’s suggested that the crossed descending pathway from the deeper layers of superior colliculus (SCd) controls orienting responses, while the uncrossed pathway mediates defense-like behavior. To overcome the limitation of these classical studies an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540932/ https://www.ncbi.nlm.nih.gov/pubmed/32928881 http://dx.doi.org/10.1523/ENEURO.0271-20.2020 |
_version_ | 1783591307240800256 |
---|---|
author | Isa, Kaoru Sooksawate, Thongchai Kobayashi, Kenta Kobayashi, Kazuto Redgrave, Peter Isa, Tadashi |
author_facet | Isa, Kaoru Sooksawate, Thongchai Kobayashi, Kenta Kobayashi, Kazuto Redgrave, Peter Isa, Tadashi |
author_sort | Isa, Kaoru |
collection | PubMed |
description | Electrical stimulation and lesion experiments in 1980’s suggested that the crossed descending pathway from the deeper layers of superior colliculus (SCd) controls orienting responses, while the uncrossed pathway mediates defense-like behavior. To overcome the limitation of these classical studies and explicitly dissect the structure and function of these two pathways, we performed selective optogenetic activation of each pathway in male mice with channelrhodopsin 2 (ChR2) expression by Cre driver using double viral vector techniques. Brief photostimulation of the crossed pathway evoked short latency contraversive orienting-like head turns, while extended stimulation induced body turn responses. In contrast, stimulation of the uncrossed pathway induced short-latency upward head movements followed by longer-latency defense-like behaviors including retreat and flight. The novel discovery was that while the evoked orienting responses were stereotyped, the defense-like responses varied considerably depending on the environment, suggesting that uncrossed output can be influenced by top-down modification of the SC or its target areas. This further suggests that the connection of the SCd-defense system with non-motor, affective and cognitive structures. Tracing the whole axonal trajectories of these two pathways revealed existence of both ascending and descending branches targeting different areas in the thalamus, midbrain, pons, medulla, and/or spinal cord, including projections which could not be detected in the classical studies; the crossed pathway has some ipsilaterally descending collaterals and the uncrossed pathway has some contralaterally descending collaterals. Some of the connections might explain the context-dependent modulation of the defense-like responses. Thus, the classical views on the tectal output systems are updated. |
format | Online Article Text |
id | pubmed-7540932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-75409322020-10-08 Dissecting the Tectal Output Channels for Orienting and Defense Responses Isa, Kaoru Sooksawate, Thongchai Kobayashi, Kenta Kobayashi, Kazuto Redgrave, Peter Isa, Tadashi eNeuro Research Article: New Research Electrical stimulation and lesion experiments in 1980’s suggested that the crossed descending pathway from the deeper layers of superior colliculus (SCd) controls orienting responses, while the uncrossed pathway mediates defense-like behavior. To overcome the limitation of these classical studies and explicitly dissect the structure and function of these two pathways, we performed selective optogenetic activation of each pathway in male mice with channelrhodopsin 2 (ChR2) expression by Cre driver using double viral vector techniques. Brief photostimulation of the crossed pathway evoked short latency contraversive orienting-like head turns, while extended stimulation induced body turn responses. In contrast, stimulation of the uncrossed pathway induced short-latency upward head movements followed by longer-latency defense-like behaviors including retreat and flight. The novel discovery was that while the evoked orienting responses were stereotyped, the defense-like responses varied considerably depending on the environment, suggesting that uncrossed output can be influenced by top-down modification of the SC or its target areas. This further suggests that the connection of the SCd-defense system with non-motor, affective and cognitive structures. Tracing the whole axonal trajectories of these two pathways revealed existence of both ascending and descending branches targeting different areas in the thalamus, midbrain, pons, medulla, and/or spinal cord, including projections which could not be detected in the classical studies; the crossed pathway has some ipsilaterally descending collaterals and the uncrossed pathway has some contralaterally descending collaterals. Some of the connections might explain the context-dependent modulation of the defense-like responses. Thus, the classical views on the tectal output systems are updated. Society for Neuroscience 2020-09-29 /pmc/articles/PMC7540932/ /pubmed/32928881 http://dx.doi.org/10.1523/ENEURO.0271-20.2020 Text en Copyright © 2020 Isa et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article: New Research Isa, Kaoru Sooksawate, Thongchai Kobayashi, Kenta Kobayashi, Kazuto Redgrave, Peter Isa, Tadashi Dissecting the Tectal Output Channels for Orienting and Defense Responses |
title | Dissecting the Tectal Output Channels for Orienting and Defense Responses |
title_full | Dissecting the Tectal Output Channels for Orienting and Defense Responses |
title_fullStr | Dissecting the Tectal Output Channels for Orienting and Defense Responses |
title_full_unstemmed | Dissecting the Tectal Output Channels for Orienting and Defense Responses |
title_short | Dissecting the Tectal Output Channels for Orienting and Defense Responses |
title_sort | dissecting the tectal output channels for orienting and defense responses |
topic | Research Article: New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540932/ https://www.ncbi.nlm.nih.gov/pubmed/32928881 http://dx.doi.org/10.1523/ENEURO.0271-20.2020 |
work_keys_str_mv | AT isakaoru dissectingthetectaloutputchannelsfororientinganddefenseresponses AT sooksawatethongchai dissectingthetectaloutputchannelsfororientinganddefenseresponses AT kobayashikenta dissectingthetectaloutputchannelsfororientinganddefenseresponses AT kobayashikazuto dissectingthetectaloutputchannelsfororientinganddefenseresponses AT redgravepeter dissectingthetectaloutputchannelsfororientinganddefenseresponses AT isatadashi dissectingthetectaloutputchannelsfororientinganddefenseresponses |