Cargando…

Baicalein inhibits non‐small‐cell lung cancer invasion and metastasis by reducing ezrin tension in inflammation microenvironment

Baicalein, a flavonoid phytochemical, has been shown to be effective as an anti‐metastatic agent for various cancers, especially for non‐small‐cell lung cancer (NSCLC). However, the underlying mechanism of how baicalein targets cellular processes during NSCLC cell invasion and metastasis remains elu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaolong, Ruan, Qinli, Zhai, Yiqian, Lu, Dandan, Li, Chen, Fu, Yahan, Zheng, Zihui, Song, Ying, Guo, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540981/
https://www.ncbi.nlm.nih.gov/pubmed/32691974
http://dx.doi.org/10.1111/cas.14577
Descripción
Sumario:Baicalein, a flavonoid phytochemical, has been shown to be effective as an anti‐metastatic agent for various cancers, especially for non‐small‐cell lung cancer (NSCLC). However, the underlying mechanism of how baicalein targets cellular processes during NSCLC cell invasion and metastasis remains elusive. In this study, we found that non‐cytotoxic concentrations of baicalein still retained anti‐dissemination activity both in vitro and in vivo. Using a genetic encoding tension probe based on Förster resonance energy transfer (FRET) theory, baicalein was shown to significantly decrease ezrin tension by downregulating cellular ezrin S‐nitrosylation (SNO) levels in NSCLC cells in the inflammatory microenvironment. Decreased ezrin tension inhibited the formation of an aggressive phenotype of NSCLC cell and leader cell in collective migration, and subsequently suppressed NSCLC dissemination. Baicalein restrained SNO‐mediated ezrin tension by decreasing iNOS expression levels. Overall this study demonstrates the novel mechanism used by baicalein to suppress NSCLC invasion and metastasis from a mechanopharmacology perspective and illustrates a new direction for drug development.