Cargando…

Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface

Electrified solid/liquid interfaces are the key to many physicochemical processes in a myriad of areas including electrochemistry and colloid science. With tremendous efforts devoted to this topic, it is unexpected that molecular-level understanding of electric double layers is still lacking. Partic...

Descripción completa

Detalles Bibliográficos
Autores principales: Le, Jia-Bo, Fan, Qi-Yuan, Li, Jie-Qiong, Cheng, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541063/
https://www.ncbi.nlm.nih.gov/pubmed/33028519
http://dx.doi.org/10.1126/sciadv.abb1219
Descripción
Sumario:Electrified solid/liquid interfaces are the key to many physicochemical processes in a myriad of areas including electrochemistry and colloid science. With tremendous efforts devoted to this topic, it is unexpected that molecular-level understanding of electric double layers is still lacking. Particularly, it is perplexing why compact Helmholtz layers often show bell-shaped differential capacitances on metal electrodes, as this would suggest a negative capacitance in some layer of interface water. Here, we report state-of-the-art ab initio molecular dynamics simulations of electrified Pt(111)/water interfaces, aiming at unraveling the structure and capacitive behavior of interface water. Our calculation reproduces the bell-shaped differential Helmholtz capacitance and shows that the interface water follows the Frumkin adsorption isotherm when varying the electrode potential, leading to a peculiar negative capacitive response. Our work provides valuable insight into the structure and capacitance of interface water, which can help understand important processes in electrocatalysis and energy storage in supercapacitors.