Cargando…

Generating spatially entangled itinerant photons with waveguide quantum electrodynamics

Realizing a fully connected network of quantum processors requires the ability to distribute quantum entanglement. For distant processing nodes, this can be achieved by generating, routing, and capturing spatially entangled itinerant photons. In this work, we demonstrate the deterministic generation...

Descripción completa

Detalles Bibliográficos
Autores principales: Kannan, B., Campbell, D. L., Vasconcelos, F., Winik, R., Kim, D. K., Kjaergaard, M., Krantz, P., Melville, A., Niedzielski, B. M., Yoder, J. L., Orlando, T. P., Gustavsson, S., Oliver, W. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541065/
https://www.ncbi.nlm.nih.gov/pubmed/33028523
http://dx.doi.org/10.1126/sciadv.abb8780
Descripción
Sumario:Realizing a fully connected network of quantum processors requires the ability to distribute quantum entanglement. For distant processing nodes, this can be achieved by generating, routing, and capturing spatially entangled itinerant photons. In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide. In particular, we generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies. Using quadrature amplitude detection, we reconstruct the moments and correlations of the photonic modes and demonstrate state preparation fidelities of 84%. Our results provide a path toward realizing quantum communication and teleportation protocols using itinerant photons generated by quantum interference within a waveguide quantum electrodynamics architecture.