Cargando…
Self-standing and flexible covalent organic framework (COF) membranes for molecular separation
Almost all covalent organic framework (COF) materials conventionally fabricated by solvothermal method at high temperatures and pressures are insoluble and unprocessable powders, which severely hinder their widespread applications. This work develops an effective and facile strategy to construct fle...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541068/ https://www.ncbi.nlm.nih.gov/pubmed/33028518 http://dx.doi.org/10.1126/sciadv.abb1110 |
Sumario: | Almost all covalent organic framework (COF) materials conventionally fabricated by solvothermal method at high temperatures and pressures are insoluble and unprocessable powders, which severely hinder their widespread applications. This work develops an effective and facile strategy to construct flexible and free-standing pure COF membranes via the liquid-liquid interface-confined reaction at room temperature and atmospheric pressure. The aperture size and channel chemistry of COF membranes can be rationally designed by bridging various molecular building blocks via strong covalent bonds. Benefiting from the highly-ordered honeycomb lattice, high solvent permeances are successfully obtained and follow the trend of acetonitrile > acetone > methanol > ethanol > isopropanol. Interestingly, the imine-linked COF membrane shows higher nonpolar solvent permeances than b-ketoenamine-linked COF due to their difference in pore polarity. Both kinds of COF membranes exhibit high solvent permeances, precise molecular sieving, excellent shape selectivity, and sufficient flexibility for membrane-based separation science and technology. |
---|