Cargando…

Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka

The quest of geological proxies to evaluate low-latitude hydrological changes at a planetary scale remains an ongoing issue. The Dole effect is such a potential proxy owing to its global character. We propose a new approach to recalculate the fluctuation of the Dole effect (∆DE*) over the past 800 t...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Enqing, Wang, Pinxian, Wang, Yue, Yan, Mi, Tian, Jun, Li, Shihan, Ma, Wentao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541075/
https://www.ncbi.nlm.nih.gov/pubmed/33028516
http://dx.doi.org/10.1126/sciadv.aba4823
Descripción
Sumario:The quest of geological proxies to evaluate low-latitude hydrological changes at a planetary scale remains an ongoing issue. The Dole effect is such a potential proxy owing to its global character. We propose a new approach to recalculate the fluctuation of the Dole effect (∆DE*) over the past 800 thousand years (ka). The ∆DE* calculated this way is dominated by precession cycles alone, with lesser variance in the obliquity bands and almost no variance in the eccentricity bands. Moreover, the ∆DE* is notably correlated with Chinese stalagmite δ(18)O record over the past 640 ka; simulated terrestrial rainfall changes between 30°N and 30°S over the past 300 ka. Our findings highlight the predominant role of the low-latitude hydroclimate in governing the ∆DE* on orbital time scales, while high-latitude climate impacts are negligible. In turn, we argue that the ∆DE* can be used to indicate low-latitude hydrological changes at a global extent.