Cargando…

Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen

Glycoprotein D (gD) of Herpes Simplex Virus-2 is used as an antigen in various anti-herpes subunit vaccines owing to its involvement in binding the host cell receptors for host infectivity. However, most of these monomeric protein based candidates have shown low immunogenicity in animal models. To e...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Vikas Kumar, Kumar, Sandeep, Dhaked, Rajeev Kumar, Ansari, Abdul S., Lohiya, Nirmal K., Tapryal, Suman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541101/
https://www.ncbi.nlm.nih.gov/pubmed/33047090
http://dx.doi.org/10.1007/s13205-020-02452-6
_version_ 1783591335798767616
author Singh, Vikas Kumar
Kumar, Sandeep
Dhaked, Rajeev Kumar
Ansari, Abdul S.
Lohiya, Nirmal K.
Tapryal, Suman
author_facet Singh, Vikas Kumar
Kumar, Sandeep
Dhaked, Rajeev Kumar
Ansari, Abdul S.
Lohiya, Nirmal K.
Tapryal, Suman
author_sort Singh, Vikas Kumar
collection PubMed
description Glycoprotein D (gD) of Herpes Simplex Virus-2 is used as an antigen in various anti-herpes subunit vaccines owing to its involvement in binding the host cell receptors for host infectivity. However, most of these monomeric protein based candidates have shown low immunogenicity in animal models. To enhance the immunogenicity of gD, a fresh approach of fusing its ectodomain with the Fc domain(s) of IgM has been adopted to oligomerize the viral antigen and to exploite the immune-modulating potential of IgM Fc. Six vaccine constructs, generated by fusing three gD-ectodomain-length-variants with the Ig µ-chain domain 4 (µCH4) and µCH3-CH4 fragment, were cloned in Escherichia coli using pET28b( +) vector. The vaccine proteins were expressed in the form of inclusion bodies (IBs) and were in vitro refolded into protein oligomers of high stoichiometries of ~ 15–24, with 70–80% refolding yields. The conformations of gD and Fc components of the refolded oligomers were analyzed by ELISA and CD spectroscopy and were found to be native-like. The sizes and profiles of the size-distribution of oligomers were determined by dynamic light scattering (DLS). The candidate C2 (gD-μCH3-CH4), showing the most compact oligomer size and uniform distribution of its particles was chosen as the suitable candidate for mice immunization studies to assess the immunogenicity of the antigen gD. The C2 oligomer stimulated a strong anti-gD humoral response with an antibody titer of 102,400 and a strong, biased Th1 immune response in C57BL/6 mice, indicating its potential as a strong immunogen which may serve as an effective vaccine candidate. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13205-020-02452-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-7541101
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-75411012020-10-08 Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen Singh, Vikas Kumar Kumar, Sandeep Dhaked, Rajeev Kumar Ansari, Abdul S. Lohiya, Nirmal K. Tapryal, Suman 3 Biotech Original Article Glycoprotein D (gD) of Herpes Simplex Virus-2 is used as an antigen in various anti-herpes subunit vaccines owing to its involvement in binding the host cell receptors for host infectivity. However, most of these monomeric protein based candidates have shown low immunogenicity in animal models. To enhance the immunogenicity of gD, a fresh approach of fusing its ectodomain with the Fc domain(s) of IgM has been adopted to oligomerize the viral antigen and to exploite the immune-modulating potential of IgM Fc. Six vaccine constructs, generated by fusing three gD-ectodomain-length-variants with the Ig µ-chain domain 4 (µCH4) and µCH3-CH4 fragment, were cloned in Escherichia coli using pET28b( +) vector. The vaccine proteins were expressed in the form of inclusion bodies (IBs) and were in vitro refolded into protein oligomers of high stoichiometries of ~ 15–24, with 70–80% refolding yields. The conformations of gD and Fc components of the refolded oligomers were analyzed by ELISA and CD spectroscopy and were found to be native-like. The sizes and profiles of the size-distribution of oligomers were determined by dynamic light scattering (DLS). The candidate C2 (gD-μCH3-CH4), showing the most compact oligomer size and uniform distribution of its particles was chosen as the suitable candidate for mice immunization studies to assess the immunogenicity of the antigen gD. The C2 oligomer stimulated a strong anti-gD humoral response with an antibody titer of 102,400 and a strong, biased Th1 immune response in C57BL/6 mice, indicating its potential as a strong immunogen which may serve as an effective vaccine candidate. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13205-020-02452-6) contains supplementary material, which is available to authorized users. Springer International Publishing 2020-10-08 2020-11 /pmc/articles/PMC7541101/ /pubmed/33047090 http://dx.doi.org/10.1007/s13205-020-02452-6 Text en © King Abdulaziz City for Science and Technology 2020
spellingShingle Original Article
Singh, Vikas Kumar
Kumar, Sandeep
Dhaked, Rajeev Kumar
Ansari, Abdul S.
Lohiya, Nirmal K.
Tapryal, Suman
Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen
title Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen
title_full Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen
title_fullStr Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen
title_full_unstemmed Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen
title_short Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen
title_sort generation of oligomers of subunit vaccine candidate glycoprotein d of herpes simplex virus-2 expressed in fusion with igm fc domain(s) in escherichia coli: a strategy to enhance the immunogenicity of the antigen
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541101/
https://www.ncbi.nlm.nih.gov/pubmed/33047090
http://dx.doi.org/10.1007/s13205-020-02452-6
work_keys_str_mv AT singhvikaskumar generationofoligomersofsubunitvaccinecandidateglycoproteindofherpessimplexvirus2expressedinfusionwithigmfcdomainsinescherichiacoliastrategytoenhancetheimmunogenicityoftheantigen
AT kumarsandeep generationofoligomersofsubunitvaccinecandidateglycoproteindofherpessimplexvirus2expressedinfusionwithigmfcdomainsinescherichiacoliastrategytoenhancetheimmunogenicityoftheantigen
AT dhakedrajeevkumar generationofoligomersofsubunitvaccinecandidateglycoproteindofherpessimplexvirus2expressedinfusionwithigmfcdomainsinescherichiacoliastrategytoenhancetheimmunogenicityoftheantigen
AT ansariabduls generationofoligomersofsubunitvaccinecandidateglycoproteindofherpessimplexvirus2expressedinfusionwithigmfcdomainsinescherichiacoliastrategytoenhancetheimmunogenicityoftheantigen
AT lohiyanirmalk generationofoligomersofsubunitvaccinecandidateglycoproteindofherpessimplexvirus2expressedinfusionwithigmfcdomainsinescherichiacoliastrategytoenhancetheimmunogenicityoftheantigen
AT tapryalsuman generationofoligomersofsubunitvaccinecandidateglycoproteindofherpessimplexvirus2expressedinfusionwithigmfcdomainsinescherichiacoliastrategytoenhancetheimmunogenicityoftheantigen