Cargando…
Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks
BACKGROUND: Despite the integral role of cephalometric analysis in orthodontics, there have been limitations regarding the reliability, accuracy, etc. of cephalometric landmarks tracing. Attempts on developing automatic plotting systems have continuously been made but they are insufficient for clini...
Autores principales: | Lee, Jeong-Hoon, Yu, Hee-Jin, Kim, Min-ji, Kim, Jin-Woo, Choi, Jongeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541217/ https://www.ncbi.nlm.nih.gov/pubmed/33028287 http://dx.doi.org/10.1186/s12903-020-01256-7 |
Ejemplares similares
-
Influence of growth structures and fixed appliances on automated cephalometric landmark recognition with a customized convolutional neural network
por: Popova, Teodora, et al.
Publicado: (2023) -
Deep convolutional neural network-based skeletal classification of cephalometric image compared with automated-tracing software
por: Kim, Ho-Jin, et al.
Publicado: (2022) -
Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
A fully deep learning model for the automatic identification of cephalometric landmarks
por: Kim, Young Hyun, et al.
Publicado: (2021)