Cargando…
Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
BACKGROUND: Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we found that different data preprocessing methods show quite...
Autores principales: | Wang, Chunxiang, Gao, Xin, Liu, Juntao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541255/ https://www.ncbi.nlm.nih.gov/pubmed/33028196 http://dx.doi.org/10.1186/s12859-020-03797-8 |
Ejemplares similares
-
scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data
por: Ye, Wenbin, et al.
Publicado: (2019) -
Preprocessing differential methylation hybridization microarray data
por: Sun, Shuying, et al.
Publicado: (2011) -
Optimization of miRNA-seq data preprocessing
por: Tam, Shirley, et al.
Publicado: (2015) -
DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data
por: Wang, Zhuo, et al.
Publicado: (2017) -
NDRindex: a method for the quality assessment of single-cell RNA-Seq preprocessing data
por: Xiao, Ruiyu, et al.
Publicado: (2020)