Cargando…
Improved detection of tumor suppressor events in single-cell RNA-Seq data
Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet effective computational strategy call...
Autores principales: | Teschendorff, Andrew E., Wang, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541488/ https://www.ncbi.nlm.nih.gov/pubmed/33083012 http://dx.doi.org/10.1038/s41525-020-00151-y |
Ejemplares similares
-
Cell-attribute aware community detection improves differential abundance testing from single-cell RNA-Seq data
por: Maity, Alok K., et al.
Publicado: (2023) -
Distance covariance entropy reveals primed states and bifurcation dynamics in single-cell RNA-Seq data
por: Luo, Qi, et al.
Publicado: (2022) -
EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
por: Teschendorff, Andrew E., et al.
Publicado: (2020) -
Ultra-fast scalable estimation of single-cell differentiation potency from scRNA-Seq data
por: Teschendorff, Andrew E, et al.
Publicado: (2020) -
DSAVE: Detection of misclassified cells in single-cell RNA-Seq data
por: Gustafsson, Johan, et al.
Publicado: (2020)