Cargando…
Negative binomial mixed models for analyzing longitudinal CD4 count data
It is of great interest for a biomedical analyst or an investigator to correctly model the CD4 cell count or disease biomarkers of a patient in the presence of covariates or factors determining the disease progression over time. The Poisson mixed-effects models (PMM) can be an appropriate choice for...
Autores principales: | Yirga, Ashenafi A., Melesse, Sileshi F., Mwambi, Henry G., Ayele, Dawit G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541535/ https://www.ncbi.nlm.nih.gov/pubmed/33028929 http://dx.doi.org/10.1038/s41598-020-73883-7 |
Ejemplares similares
-
Additive quantile mixed effects modelling with application to longitudinal CD4 count data
por: Yirga, Ashenafi A., et al.
Publicado: (2021) -
Application of quantile mixed-effects model in modeling CD4 count from HIV-infected patients in KwaZulu-Natal South Africa
por: Yirga, Ashenafi A., et al.
Publicado: (2022) -
Modelling CD4 counts before and after HAART for HIV infected patients in KwaZulu-Natal South Africa
por: Yirga, Ashenfai A, et al.
Publicado: (2020) -
Factors affecting child malnutrition in Ethiopia
por: Yirga, Ashenafi Argaw, et al.
Publicado: (2019) -
Negative binomial mixed models for analyzing microbiome count data
por: Zhang, Xinyan, et al.
Publicado: (2017)