Cargando…
T4SE-XGB: Interpretable Sequence-Based Prediction of Type IV Secreted Effectors Using eXtreme Gradient Boosting Algorithm
Type IV secreted effectors (T4SEs) can be translocated into the cytosol of host cells via type IV secretion system (T4SS) and cause diseases. However, experimental approaches to identify T4SEs are time- and resource-consuming, and the existing computational tools based on machine learning techniques...
Autores principales: | Chen, Tianhang, Wang, Xiangeng, Chu, Yanyi, Wang, Yanjing, Jiang, Mingming, Wei, Dong-Qing, Xiong, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541839/ https://www.ncbi.nlm.nih.gov/pubmed/33072049 http://dx.doi.org/10.3389/fmicb.2020.580382 |
Ejemplares similares
-
XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set
por: Sikander, Rahu, et al.
Publicado: (2022) -
Prediction of fall events during admission using eXtreme gradient boosting: a comparative validation study
por: Hsu, Yin-Chen, et al.
Publicado: (2020) -
A clinical diagnostic model based on an eXtreme Gradient Boosting algorithm to distinguish type 1 diabetes
por: Tang, Xiaohan, et al.
Publicado: (2021) -
Outcome prediction for acute kidney injury among hospitalized children via eXtreme Gradient Boosting algorithm
por: Deng, Ying-Hao, et al.
Publicado: (2022) -
A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorological drivers
por: Rahman, Md. Siddikur, et al.
Publicado: (2022)