Cargando…
Multi-level modeling with nonlinear movement metrics to classify self-injurious behaviors in autism spectrum disorder
Self-injurious behavior (SIB) is among the most dangerous concerns in autism spectrum disorder (ASD), often requiring detailed and tedious management methods. Sensor-based behavioral monitoring could address the limitations of these methods, though the complex problem of classifying variable behavio...
Autores principales: | Cantin-Garside, Kristine D., Srinivasan, Divya, Ranganathan, Shyam, White, Susan W., Nussbaum, Maury A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542156/ https://www.ncbi.nlm.nih.gov/pubmed/33028829 http://dx.doi.org/10.1038/s41598-020-73155-4 |
Ejemplares similares
Ejemplares similares
-
Hilbert's projective metric and iterated nonlinear maps
por: Nussbaum, R
Publicado: (1988) -
Iterated nonlinear maps and Hilbert's projective metric II
por: Nussbaum, Roger D
Publicado: (1989) -
Machine Learning and Virtual Reality on Body Movements’ Behaviors to Classify Children with Autism Spectrum Disorder
por: Alcañiz Raya, Mariano, et al.
Publicado: (2020) -
Classifying Diverse Physical Activities Using “Smart Garments”
por: Mokhlespour Esfahani, Mohammad Iman, et al.
Publicado: (2019) -
Classifiers and their Metrics Quantified
por: Brown, J. B.
Publicado: (2018)