Cargando…
Deep neural networks detect suicide risk from textual facebook posts
Detection of suicide risk is a highly prioritized, yet complicated task. Five decades of research have produced predictions slightly better than chance (AUCs = 0.56–0.58). In this study, Artificial Neural Network (ANN) models were constructed to predict suicide risk from everyday language of social...
Autores principales: | Ophir, Yaakov, Tikochinski, Refael, Asterhan, Christa S. C., Sisso, Itay, Reichart, Roi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542168/ https://www.ncbi.nlm.nih.gov/pubmed/33028921 http://dx.doi.org/10.1038/s41598-020-73917-0 |
Ejemplares similares
-
Mothers’ Perceptions of Children’s Screen Use During the COVID-19 Lockdown in Israel
por: Ophir, Yaakov, et al.
Publicado: (2022) -
Neural Correlates of Numerical Estimation: The Role of Strategy Use
por: Ashkenazi, Sarit, et al.
Publicado: (2022) -
Perceived Epistemic Authority (Source Credibility) of a TV Interviewer Moderates the Media Bias Effect Caused by His Nonverbal Behavior
por: Tikochinski, Refael, et al.
Publicado: (2022) -
Aspect extraction on user textual reviews using multi-channel convolutional neural network
por: Da’u, Aminu, et al.
Publicado: (2019) -
Burned-Out: Middle School Teachers After One Year of Online Remote Teaching During COVID-19
por: Gutentag, Tony, et al.
Publicado: (2022)