Cargando…

The Glycoprotease CpaA Secreted by Medically Relevant Acinetobacter Species Targets Multiple O-Linked Host Glycoproteins

Glycans decorate proteins and affect their biological function, including protection against proteolytic degradation. However, pathogenic, and commensal bacteria have evolved specific glycoproteases that overcome the steric impediment posed by carbohydrates, cleaving glycoproteins precisely at their...

Descripción completa

Detalles Bibliográficos
Autores principales: Haurat, M. Florencia, Scott, Nichollas E., Di Venanzio, Gisela, Lopez, Juvenal, Pluvinage, Benjamin, Boraston, Alisdair B., Ferracane, Michael J., Feldman, Mario F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542363/
https://www.ncbi.nlm.nih.gov/pubmed/33024038
http://dx.doi.org/10.1128/mBio.02033-20
Descripción
Sumario:Glycans decorate proteins and affect their biological function, including protection against proteolytic degradation. However, pathogenic, and commensal bacteria have evolved specific glycoproteases that overcome the steric impediment posed by carbohydrates, cleaving glycoproteins precisely at their glycosylation site(s). Medically relevant Acinetobacter strains employ their type II secretion system (T2SS) to secrete the glycoprotease CpaA, which contributes to virulence. Previously, CpaA was shown to cleave two O-linked glycoproteins, factors V and XII, leading to reduced blood coagulation. In this work, we show that CpaA cleaves a broader range of O-linked human glycoproteins, including several glycoproteins involved in complement activation, such as CD55 and CD46. However, only CD55 was removed from the cell surface, while CD46 remained unaltered during the Acinetobacter nosocomialis infection assay. We show that CpaA has a unique consensus target sequence that consists of a glycosylated serine or threonine residue after a proline residue (P-S/T), and its activity is not affected by sialic acids. Molecular modeling and mutagenesis analysis of CpaA suggest that the indole ring of Trp493 and the ring of the Pro residue in the substrate form a key interaction that contributes to CpaA sequence selectivity. Similar bacterial glycoproteases have recently gained attention as tools for proteomic analysis of human glycoproteins, and CpaA appears to be a robust and attractive new component of the glycoproteomics toolbox. Combined, our work provides insight into the function and possible application of CpaA, a member of a widespread class of broad-spectrum bacterial glycoproteases involved in host-pathogen interactions.