Cargando…
Identification of microbial interaction network: zero-inflated latent Ising model based approach
BACKGROUND: Throughout their lifespans, humans continually interact with the microbial world, including those organisms which live in and on the human body. Research in this domain has revealed the extensive links between the human-associated microbiota and health. In particular, the microbiota of t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542390/ https://www.ncbi.nlm.nih.gov/pubmed/33042226 http://dx.doi.org/10.1186/s13040-020-00226-7 |
Sumario: | BACKGROUND: Throughout their lifespans, humans continually interact with the microbial world, including those organisms which live in and on the human body. Research in this domain has revealed the extensive links between the human-associated microbiota and health. In particular, the microbiota of the human gut plays essential roles in digestion, nutrient metabolism, immune maturation and homeostasis, neurological signaling, and endocrine regulation. Microbial interaction networks are frequently estimated from data and are an indispensable tool for representing and understanding the conditional correlation between the microbes. In this high-dimensional setting, zero-inflation and unit-sum constraint for relative abundance data pose challenges to the reliable estimation of microbial interaction networks. METHODS AND RESULTS: To identify the microbial interaction network, the zero-inflated latent Ising (ZILI) model is proposed which assumes the distribution of relative abundance relies only on finite latent states and provides a novel way to solve issues induced by the unit-sum and zero-inflation constrains. A two-step algorithm is proposed for the model selection of ZILI. ZILI is evaluated through simulated data and subsequently applied to an infant gut microbiota dataset from New Hampshire Birth Cohort Study. The results are compared with results from Gaussian graphical model (GGM) and dichotomous Ising model (DIS). Providing ZILI is the true data-generating model, the simulation studies show that the two-step algorithm can identify the graphical structure effectively and is robust to a range of parameter settings. For the infant gut microbiota dataset, the final estimated networks from GGM and ZILI turn out to have significant overlap in which the ZILI tends to select the sparser network than those from GGM. From the shared subnetwork, a hub taxon Lachnospiraceae is identified whose involvement in human disease development has been discovered recently in literature. CONCLUSIONS: Constrains induced by relative abundance of microbiota such as zero inflation and unit sum render the conditional correlation analysis unreliable for conventional methods such as GGM. The proposed optimal categoricalization based ZILI model provides an alternative yet elegant way to deal with these difficulties. The results from ZILI have reasonable biological interpretation. This model can also be used to study the microbial interaction in other body parts. |
---|