Cargando…
Simulation of liquid flow with a combination artificial intelligence flow field and Adams–Bashforth method
Direct numerical simulation (DNS) of particle hydrodynamics in the multiphase industrial process enables us to fully learn the process and optimize it on the industrial scale. However, using high-resolution computational calculations for particle movement and the interaction between the solid phase...
Autores principales: | Babanezhad, Meisam, Behroyan, Iman, Nakhjiri, Ali Taghvaie, Marjani, Azam, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542447/ https://www.ncbi.nlm.nih.gov/pubmed/33028861 http://dx.doi.org/10.1038/s41598-020-72602-6 |
Ejemplares similares
-
Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
por: Babanezhad, Meisam, et al.
Publicado: (2021) -
Prediction of Nanofluid Characteristics and Flow Pattern
on Artificial Differential Evolution Learning Nodes and Fuzzy Framework
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Liquid temperature prediction in bubbly flow using ant colony optimization algorithm in the fuzzy inference system as a trainer
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Prediction of turbulence eddy dissipation of water flow in a heated metal foam tube
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Prediction of gas velocity in two-phase flow using developed fuzzy logic system with differential evolution algorithm
por: Babanezhad, Meisam, et al.
Publicado: (2021)