Cargando…
On the interpretability of predictors in spatial data science: the information horizon
Two important theories in spatial modelling relate to structural and spatial dependence. Structural dependence refers to environmental state-factor models, where an environmental property is modelled as a function of the states and interactions of environmental predictors, such as climate, parent ma...
Autores principales: | Behrens, Thorsten, Viscarra Rossel, Raphael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542468/ https://www.ncbi.nlm.nih.gov/pubmed/33028910 http://dx.doi.org/10.1038/s41598-020-73773-y |
Ejemplares similares
-
The relevant range of scales for multi-scale contextual spatial modelling
por: Behrens, Thorsten, et al.
Publicado: (2019) -
Multi-scale digital soil mapping with deep learning
por: Behrens, Thorsten, et al.
Publicado: (2018) -
Automated spectroscopic modelling with optimised convolutional neural networks
por: Shen, Zefang, et al.
Publicado: (2021) -
Assessment of the Effect of Soil Sample Preparation, Water Content and Excitation Time on Proximal X-ray Fluorescence Sensing
por: Li, Shuo, et al.
Publicado: (2022) -
Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change
por: Viscarra Rossel, Raphael A, et al.
Publicado: (2014)