Cargando…
EEG-Based Epilepsy Recognition via Multiple Kernel Learning
In the field of brain-computer interfaces, it is very common to use EEG signals for disease diagnosis. In this study, a style regularized least squares support vector machine based on multikernel learning is proposed and applied to the recognition of epilepsy abnormal signals. The algorithm uses the...
Autores principales: | Yao, Yufeng, Ding, Yan, Zhong, Shan, Cui, Zhiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542487/ https://www.ncbi.nlm.nih.gov/pubmed/33062042 http://dx.doi.org/10.1155/2020/7980249 |
Ejemplares similares
-
An Automatic Epilepsy Detection Method Based on Improved Inductive Transfer Learning
por: Yao, Yufeng, et al.
Publicado: (2020) -
Decoding intracranial EEG data with multiple kernel learning method
por: Schrouff, Jessica, et al.
Publicado: (2016) -
Characterizing social and cognitive EEG-ERP through multiple kernel learning
por: Nieto Mora, Daniel, et al.
Publicado: (2023) -
EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
por: Phan, Tran-Dac-Thinh, et al.
Publicado: (2021) -
Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine
por: Li, Xiaoou, et al.
Publicado: (2014)