Cargando…
Correntropy induced loss based sparse robust graph regularized extreme learning machine for cancer classification
BACKGROUND: As a machine learning method with high performance and excellent generalization ability, extreme learning machine (ELM) is gaining popularity in various studies. Various ELM-based methods for different fields have been proposed. However, the robustness to noise and outliers is always the...
Autores principales: | Ren, Liang-Rui, Gao, Ying-Lian, Liu, Jin-Xing, Shang, Junliang, Zheng, Chun-Hou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542897/ https://www.ncbi.nlm.nih.gov/pubmed/33028187 http://dx.doi.org/10.1186/s12859-020-03790-1 |
Ejemplares similares
-
Evolved-Cooperative Correntropy-Based Extreme Learning Machine for Robust Prediction
por: Mei, Wenjuan, et al.
Publicado: (2019) -
Correntropy-Induced Discriminative Nonnegative Sparse Coding for Robust Palmprint Recognition
por: Jing, Kunlei, et al.
Publicado: (2020) -
Sparse Graph Regularization Non-Negative Matrix Factorization Based on Huber Loss Model for Cancer Data Analysis
por: Wang, Chuan-Yuan, et al.
Publicado: (2019) -
Robust large-scale clustering based on correntropy
por: Jin, Guodong, et al.
Publicado: (2022) -
Non-negative matrix factorization by maximizing correntropy for cancer clustering
por: Wang, Jim Jing-Yan, et al.
Publicado: (2013)