Cargando…
Automated Intensity Modulated Radiation Therapy Treatment Planning for Cervical Cancer Based on Convolution Neural Network
PURPOSE: To develop and evaluate an automatic intensity-modulated radiation therapy (IMRT) program for cervical cancer, including a Convolution Neural Network (CNN)-based prediction model and an automated optimization strategy. METHODS: A CNN deep learning model was trained to predict a patient-spec...
Autores principales: | Jihong, Chen, Penggang, Bai, Xiuchun, Zhang, Kaiqiang, Chen, Wenjuan, Chen, Yitao, Dai, Jiewei, Qian, Kerun, Quan, Jing, Zhong, Tianming, Wu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543127/ https://www.ncbi.nlm.nih.gov/pubmed/33016230 http://dx.doi.org/10.1177/1533033820957002 |
Ejemplares similares
-
A knowledge-based intensity-modulated radiation therapy treatment planning technique for locally advanced nasopharyngeal carcinoma radiotherapy
por: Bai, Penggang, et al.
Publicado: (2020) -
CBCT-based synthetic CT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma
por: Jihong, Chen, et al.
Publicado: (2023) -
Evaluation of auto-planning in VMAT for locally advanced nasopharyngeal carcinoma
por: Jihong, Chen, et al.
Publicado: (2022) -
Changes in Tumor Volumes and Spatial Locations Relative to Normal Tissues During Cervical Cancer Radiotherapy Assessed by Cone Beam Computed Tomography
por: Chen, Wenjuan, et al.
Publicado: (2017) -
Prognostic value of tumor measurement parameters and SCC-Ag changes in patients with locally-advanced cervical cancer
por: Chen, Wenjuan, et al.
Publicado: (2022)