Cargando…
A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus
OBJECTIVE: Estimating the hospitalization risk for people with comorbidities infected by the SARS-CoV-2 virus is important for developing public health policies and guidance. Traditional biostatistical methods for risk estimations require: (i) the number of infected people who were not hospitalized,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543407/ https://www.ncbi.nlm.nih.gov/pubmed/32986795 http://dx.doi.org/10.1093/jamia/ocaa246 |
_version_ | 1783591695264251904 |
---|---|
author | Gao, Xiang Dong, Qunfeng |
author_facet | Gao, Xiang Dong, Qunfeng |
author_sort | Gao, Xiang |
collection | PubMed |
description | OBJECTIVE: Estimating the hospitalization risk for people with comorbidities infected by the SARS-CoV-2 virus is important for developing public health policies and guidance. Traditional biostatistical methods for risk estimations require: (i) the number of infected people who were not hospitalized, which may be severely undercounted since many infected people were not tested; (ii) comorbidity information for people not hospitalized, which may not always be readily available. We aim to overcome these limitations by developing a Bayesian approach to estimate the risk ratio of hospitalization for COVID-19 patients with comorbidities. MATERIALS AND METHODS: We derived a Bayesian approach to estimate the posterior distribution of the risk ratio using the observed frequency of comorbidities in COVID-19 patients in hospitals and the prevalence of comorbidities in the general population. We applied our approach to 2 large-scale datasets in the United States: 2491 patients in the COVID-NET, and 5700 patients in New York hospitals. RESULTS: Our results consistently indicated that cardiovascular diseases carried the highest hospitalization risk for COVID-19 patients, followed by diabetes, chronic respiratory disease, hypertension, and obesity, respectively. DISCUSSION: Our approach only needs (i) the number of hospitalized COVID-19 patients and their comorbidity information, which can be reliably obtained using hospital records, and (ii) the prevalence of the comorbidity of interest in the general population, which is regularly documented by public health agencies for common medical conditions. CONCLUSION: We developed a novel Bayesian approach to estimate the hospitalization risk for people with comorbidities infected with the SARS-CoV-2 virus. |
format | Online Article Text |
id | pubmed-7543407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-75434072020-10-08 A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus Gao, Xiang Dong, Qunfeng J Am Med Inform Assoc Research and Applications OBJECTIVE: Estimating the hospitalization risk for people with comorbidities infected by the SARS-CoV-2 virus is important for developing public health policies and guidance. Traditional biostatistical methods for risk estimations require: (i) the number of infected people who were not hospitalized, which may be severely undercounted since many infected people were not tested; (ii) comorbidity information for people not hospitalized, which may not always be readily available. We aim to overcome these limitations by developing a Bayesian approach to estimate the risk ratio of hospitalization for COVID-19 patients with comorbidities. MATERIALS AND METHODS: We derived a Bayesian approach to estimate the posterior distribution of the risk ratio using the observed frequency of comorbidities in COVID-19 patients in hospitals and the prevalence of comorbidities in the general population. We applied our approach to 2 large-scale datasets in the United States: 2491 patients in the COVID-NET, and 5700 patients in New York hospitals. RESULTS: Our results consistently indicated that cardiovascular diseases carried the highest hospitalization risk for COVID-19 patients, followed by diabetes, chronic respiratory disease, hypertension, and obesity, respectively. DISCUSSION: Our approach only needs (i) the number of hospitalized COVID-19 patients and their comorbidity information, which can be reliably obtained using hospital records, and (ii) the prevalence of the comorbidity of interest in the general population, which is regularly documented by public health agencies for common medical conditions. CONCLUSION: We developed a novel Bayesian approach to estimate the hospitalization risk for people with comorbidities infected with the SARS-CoV-2 virus. Oxford University Press 2020-09-29 /pmc/articles/PMC7543407/ /pubmed/32986795 http://dx.doi.org/10.1093/jamia/ocaa246 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
spellingShingle | Research and Applications Gao, Xiang Dong, Qunfeng A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus |
title | A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus |
title_full | A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus |
title_fullStr | A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus |
title_full_unstemmed | A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus |
title_short | A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus |
title_sort | bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by sars-cov-2 virus |
topic | Research and Applications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543407/ https://www.ncbi.nlm.nih.gov/pubmed/32986795 http://dx.doi.org/10.1093/jamia/ocaa246 |
work_keys_str_mv | AT gaoxiang abayesianframeworkforestimatingtheriskratioofhospitalizationforpeoplewithcomorbidityinfectedbysarscov2virus AT dongqunfeng abayesianframeworkforestimatingtheriskratioofhospitalizationforpeoplewithcomorbidityinfectedbysarscov2virus AT gaoxiang bayesianframeworkforestimatingtheriskratioofhospitalizationforpeoplewithcomorbidityinfectedbysarscov2virus AT dongqunfeng bayesianframeworkforestimatingtheriskratioofhospitalizationforpeoplewithcomorbidityinfectedbysarscov2virus |