Cargando…
A Bayesian framework for estimating the risk ratio of hospitalization for people with comorbidity infected by SARS-CoV-2 virus
OBJECTIVE: Estimating the hospitalization risk for people with comorbidities infected by the SARS-CoV-2 virus is important for developing public health policies and guidance. Traditional biostatistical methods for risk estimations require: (i) the number of infected people who were not hospitalized,...
Autores principales: | Gao, Xiang, Dong, Qunfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543407/ https://www.ncbi.nlm.nih.gov/pubmed/32986795 http://dx.doi.org/10.1093/jamia/ocaa246 |
Ejemplares similares
-
Bayesian estimation of the seroprevalence of antibodies to SARS-CoV-2
por: Dong, Qunfeng, et al.
Publicado: (2020) -
A primer on Bayesian estimation of prevalence of COVID-19 patient outcomes
por: Gao, Xiang, et al.
Publicado: (2020) -
easyPheno: An easy-to-use and easy-to-extend Python framework for phenotype prediction using Bayesian optimization
por: Haselbeck, Florian, et al.
Publicado: (2023) -
A computable case definition for patients with SARS-CoV2 testing that occurred outside the hospital
por: Wang, Lijing, et al.
Publicado: (2023) -
mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters
por: Jónsson, Hákon, et al.
Publicado: (2013)