Cargando…
Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation
This paper presents an automatic classification segmentation tool for helping screening COVID-19 pneumonia using chest CT imaging. The segmented lesions can help to assess the severity of pneumonia and follow-up the patients. In this work, we propose a new multitask deep learning model to jointly id...
Autores principales: | Amyar, Amine, Modzelewski, Romain, Li, Hua, Ruan, Su |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543793/ https://www.ncbi.nlm.nih.gov/pubmed/33065387 http://dx.doi.org/10.1016/j.compbiomed.2020.104037 |
Ejemplares similares
-
Weakly Supervised Tumor Detection in PET Using Class Response for Treatment Outcome Prediction
por: Amyar, Amine, et al.
Publicado: (2022) -
Diagnosis of Esophageal Lesions by Multi-Classification and Segmentation Using an Improved Multi-Task Deep Learning Model
por: Tang, Suigu, et al.
Publicado: (2022) -
GSN-HVNET: A Lightweight, Multi-Task Deep Learning Framework for Nuclei Segmentation and Classification
por: Zhao, Tengfei, et al.
Publicado: (2023) -
Explainable multi-instance and multi-task learning for COVID-19 diagnosis and lesion segmentation in CT images()
por: Li, Minglei, et al.
Publicado: (2022) -
A Multi-Task Learning Framework for Automated Segmentation and Classification of Breast Tumors From Ultrasound Images
por: Chowdary, Jignesh, et al.
Publicado: (2022)