Cargando…

Isolation and transcriptional characterization of mouse perivascular astrocytes

In the post-natal mammalian brain perivascular astrocytes (PAs) ensheath blood vessels to regulate their unique permeability properties known as the blood-brain barrier (BBB). Very little is known about PA-expressed genes and signaling pathways that mediate contact and communication with endothelial...

Descripción completa

Detalles Bibliográficos
Autores principales: Yosef, Nejla, Xi, Yuanxin, McCarty, Joseph H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544046/
https://www.ncbi.nlm.nih.gov/pubmed/33031376
http://dx.doi.org/10.1371/journal.pone.0240035
Descripción
Sumario:In the post-natal mammalian brain perivascular astrocytes (PAs) ensheath blood vessels to regulate their unique permeability properties known as the blood-brain barrier (BBB). Very little is known about PA-expressed genes and signaling pathways that mediate contact and communication with endothelial cells (ECs) to regulate BBB physiology. This is due, in part, to lack of suitable models to distinguish PAs from other astrocyte sub-populations in the brain. To decipher the unique biology of PAs, we used in vivo gene knock-in technology to fluorescently label these cells in the adult mouse brain followed by fractionation and quantitative single cell RNA sequencing. In addition, PAs and non-PAs were also distinguished with transgenic fluorescent reporters followed by gene expression comparisons using bulk RNA sequencing. These efforts have identified several genes and pathways in PAs with potential roles in contact and communication with brain ECs. These genes encode various extracellular matrix (ECM) proteins and adhesion receptors, secreted growth factors, and intracellular signaling enzymes. Collectively, our experimental data reveal a set of genes that are expressed in PAs with putative roles in BBB physiology.