Cargando…

PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response

Poly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching freque...

Descripción completa

Detalles Bibliográficos
Autores principales: Aberle, Lisa, Krüger, Annika, Reber, Julia M, Lippmann, Michelle, Hufnagel, Matthias, Schmalz, Michael, Trussina, Irmela R E A, Schlesiger, Sarah, Zubel, Tabea, Schütz, Karina, Marx, Andreas, Hartwig, Andrea, Ferrando-May, Elisa, Bürkle, Alexander, Mangerich, Aswin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544232/
https://www.ncbi.nlm.nih.gov/pubmed/32667640
http://dx.doi.org/10.1093/nar/gkaa590
_version_ 1783591818147921920
author Aberle, Lisa
Krüger, Annika
Reber, Julia M
Lippmann, Michelle
Hufnagel, Matthias
Schmalz, Michael
Trussina, Irmela R E A
Schlesiger, Sarah
Zubel, Tabea
Schütz, Karina
Marx, Andreas
Hartwig, Andrea
Ferrando-May, Elisa
Bürkle, Alexander
Mangerich, Aswin
author_facet Aberle, Lisa
Krüger, Annika
Reber, Julia M
Lippmann, Michelle
Hufnagel, Matthias
Schmalz, Michael
Trussina, Irmela R E A
Schlesiger, Sarah
Zubel, Tabea
Schütz, Karina
Marx, Andreas
Hartwig, Andrea
Ferrando-May, Elisa
Bürkle, Alexander
Mangerich, Aswin
author_sort Aberle, Lisa
collection PubMed
description Poly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching frequencies, but the biological significance of this is basically unknown. To unravel structure-specific functions of PAR, we used PARP1 mutants producing PAR of different qualities, i.e. short and hypobranched (PARP1\G972R), short and moderately hyperbranched (PARP1\Y986S), or strongly hyperbranched PAR (PARP1\Y986H). By reconstituting HeLa PARP1 knockout cells, we demonstrate that PARP1\G972R negatively affects cellular endpoints, such as viability, cell cycle progression and genotoxic stress resistance. In contrast, PARP1\Y986S elicits only mild effects, suggesting that PAR branching compensates for short polymer length. Interestingly, PARP1\Y986H exhibits moderate beneficial effects on cell physiology. Furthermore, different PARP1 mutants have distinct effects on molecular processes, such as gene expression and protein localization dynamics of PARP1 itself, and of its downstream factor XRCC1. Finally, the biological relevance of PAR branching is emphasized by the fact that branching frequencies vary considerably during different phases of the DNA damage-induced PARylation reaction and between different mouse tissues. Taken together, this study reveals that PAR branching and chain length essentially affect cellular functions, which further supports the notion of a ‘PAR code’.
format Online
Article
Text
id pubmed-7544232
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-75442322020-10-15 PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response Aberle, Lisa Krüger, Annika Reber, Julia M Lippmann, Michelle Hufnagel, Matthias Schmalz, Michael Trussina, Irmela R E A Schlesiger, Sarah Zubel, Tabea Schütz, Karina Marx, Andreas Hartwig, Andrea Ferrando-May, Elisa Bürkle, Alexander Mangerich, Aswin Nucleic Acids Res NAR Breakthrough Article Poly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching frequencies, but the biological significance of this is basically unknown. To unravel structure-specific functions of PAR, we used PARP1 mutants producing PAR of different qualities, i.e. short and hypobranched (PARP1\G972R), short and moderately hyperbranched (PARP1\Y986S), or strongly hyperbranched PAR (PARP1\Y986H). By reconstituting HeLa PARP1 knockout cells, we demonstrate that PARP1\G972R negatively affects cellular endpoints, such as viability, cell cycle progression and genotoxic stress resistance. In contrast, PARP1\Y986S elicits only mild effects, suggesting that PAR branching compensates for short polymer length. Interestingly, PARP1\Y986H exhibits moderate beneficial effects on cell physiology. Furthermore, different PARP1 mutants have distinct effects on molecular processes, such as gene expression and protein localization dynamics of PARP1 itself, and of its downstream factor XRCC1. Finally, the biological relevance of PAR branching is emphasized by the fact that branching frequencies vary considerably during different phases of the DNA damage-induced PARylation reaction and between different mouse tissues. Taken together, this study reveals that PAR branching and chain length essentially affect cellular functions, which further supports the notion of a ‘PAR code’. Oxford University Press 2020-07-15 /pmc/articles/PMC7544232/ /pubmed/32667640 http://dx.doi.org/10.1093/nar/gkaa590 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle NAR Breakthrough Article
Aberle, Lisa
Krüger, Annika
Reber, Julia M
Lippmann, Michelle
Hufnagel, Matthias
Schmalz, Michael
Trussina, Irmela R E A
Schlesiger, Sarah
Zubel, Tabea
Schütz, Karina
Marx, Andreas
Hartwig, Andrea
Ferrando-May, Elisa
Bürkle, Alexander
Mangerich, Aswin
PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response
title PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response
title_full PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response
title_fullStr PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response
title_full_unstemmed PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response
title_short PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response
title_sort parp1 catalytic variants reveal branching and chain length-specific functions of poly(adp-ribose) in cellular physiology and stress response
topic NAR Breakthrough Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544232/
https://www.ncbi.nlm.nih.gov/pubmed/32667640
http://dx.doi.org/10.1093/nar/gkaa590
work_keys_str_mv AT aberlelisa parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT krugerannika parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT reberjuliam parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT lippmannmichelle parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT hufnagelmatthias parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT schmalzmichael parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT trussinairmelarea parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT schlesigersarah parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT zubeltabea parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT schutzkarina parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT marxandreas parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT hartwigandrea parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT ferrandomayelisa parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT burklealexander parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse
AT mangerichaswin parp1catalyticvariantsrevealbranchingandchainlengthspecificfunctionsofpolyadpriboseincellularphysiologyandstressresponse