Cargando…
Combining fragment docking with graph theory to improve ligand docking for homology model structures
Computational protein–ligand docking is well-known to be prone to inaccuracies in input receptor structures, and it is challenging to obtain good docking results with computationally predicted receptor structures (e.g. through homology modeling). Here we introduce a fragment-based docking method and...
Autores principales: | Sarfaraz, Sara, Muneer, Iqra, Liu, Haiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544562/ https://www.ncbi.nlm.nih.gov/pubmed/33034007 http://dx.doi.org/10.1007/s10822-020-00345-7 |
Ejemplares similares
-
CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting
por: Liu, Yang, et al.
Publicado: (2022) -
CoDock-Ligand: combined template-based docking and CNN-based scoring in ligand binding prediction
por: Pang, Mingwei, et al.
Publicado: (2023) -
Binding mode information improves fragment docking
por: Jacquemard, Célien, et al.
Publicado: (2019) -
Improving Blind Docking in DOCK6 through an Automated Preliminary Fragment Probing Strategy
por: Jofily, Paula, et al.
Publicado: (2021) -
SnugDock: Paratope Structural Optimization during Antibody-Antigen Docking Compensates for Errors in Antibody Homology Models
por: Sircar, Aroop, et al.
Publicado: (2010)