Cargando…

Crosslingual named entity recognition for clinical de-identification applied to a COVID-19 Italian data set

The COrona VIrus Disease 19 (COVID-19) pandemic required the work of all global experts to tackle it. Despite the abundance of new studies, privacy laws prevent their dissemination for medical investigations: through clinical de-identification, the Protected Health Information (PHI) contained therei...

Descripción completa

Detalles Bibliográficos
Autores principales: Catelli, Rosario, Gargiulo, Francesco, Casola, Valentina, De Pietro, Giuseppe, Fujita, Hamido, Esposito, Massimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544600/
https://www.ncbi.nlm.nih.gov/pubmed/33052197
http://dx.doi.org/10.1016/j.asoc.2020.106779
Descripción
Sumario:The COrona VIrus Disease 19 (COVID-19) pandemic required the work of all global experts to tackle it. Despite the abundance of new studies, privacy laws prevent their dissemination for medical investigations: through clinical de-identification, the Protected Health Information (PHI) contained therein can be anonymized so that medical records can be shared and published. The automation of clinical de-identification through deep learning techniques has proven to be less effective for languages other than English due to the scarcity of data sets. Hence a new Italian de-identification data set has been created from the COVID-19 clinical records made available by the Italian Society of Radiology (SIRM). Therefore, two multi-lingual deep learning systems have been developed for this low-resource language scenario: the objective is to investigate their ability to transfer knowledge between different languages while maintaining the necessary features to correctly perform the Named Entity Recognition task for de-identification. The systems were trained using four different strategies, using both the English Informatics for Integrating Biology & the Bedside (i2b2) 2014 and the new Italian SIRM COVID-19 data sets, then evaluated on the latter. These approaches have demonstrated the effectiveness of cross-lingual transfer learning to de-identify medical records written in a low resource language such as Italian, using one with high resources such as English.