Cargando…
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
(Aim) COVID-19 is an infectious disease spreading to the world this year. In this study, we plan to develop an artificial intelligence based tool to diagnose on chest CT images. (Method) On one hand, we extract features from a self-created convolutional neural network (CNN) to learn individual image...
Autores principales: | Wang, Shui-Hua, Govindaraj, Vishnu Varthanan, Górriz, Juan Manuel, Zhang, Xin, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544601/ https://www.ncbi.nlm.nih.gov/pubmed/33052196 http://dx.doi.org/10.1016/j.inffus.2020.10.004 |
Ejemplares similares
-
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
Feature Fusion Based on Graph Convolution Network for Modulation Classification in Underwater Communication
por: Yao, Xiaohui, et al.
Publicado: (2023) -
DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites
por: Zhang, Jidong, et al.
Publicado: (2022) -
Path-enhanced graph convolutional networks for node classification without features
por: Jiao, Qingju, et al.
Publicado: (2023)