Cargando…

Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets

Laser Plasma Wakefield Accelerated (LWFA) electron beams and efficiency of betatron X-ray sources is studied using laser micromachined supersonic gas jet nozzle arrays. Separate sections of the target are used for the injection, acceleration and enhancement of electron oscillation. In this report, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomkus, Vidmantas, Girdauskas, Valdas, Dudutis, Juozas, Gečys, Paulius, Stankevič, Valdemar, Račiukaitis, Gediminas, Gallardo González, Isabel, Guénot, Diego, Svensson, Jonas Björklund, Persson, Anders, Lundh, Olle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545103/
https://www.ncbi.nlm.nih.gov/pubmed/33033319
http://dx.doi.org/10.1038/s41598-020-73805-7
Descripción
Sumario:Laser Plasma Wakefield Accelerated (LWFA) electron beams and efficiency of betatron X-ray sources is studied using laser micromachined supersonic gas jet nozzle arrays. Separate sections of the target are used for the injection, acceleration and enhancement of electron oscillation. In this report, we present the results of LWFA and X-ray generation using dynamic gas density grid built by shock-waves of colliding jets. The experiment was done with the 40 TW, 35 fs laser at the Lund Laser Centre. Electron energies of 30–150 MeV and 1.0 × 10(8)–5.5 × 10(8) photons per shot of betatron radiation have been measured. The implementation of the betatron source with separate regions of LWFA and plasma density grid raised the efficiency of X-ray generation and increased the number of photons per shot by a factor of 2–3 relative to a single-jet gas target source.