Cargando…

Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets

Laser Plasma Wakefield Accelerated (LWFA) electron beams and efficiency of betatron X-ray sources is studied using laser micromachined supersonic gas jet nozzle arrays. Separate sections of the target are used for the injection, acceleration and enhancement of electron oscillation. In this report, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomkus, Vidmantas, Girdauskas, Valdas, Dudutis, Juozas, Gečys, Paulius, Stankevič, Valdemar, Račiukaitis, Gediminas, Gallardo González, Isabel, Guénot, Diego, Svensson, Jonas Björklund, Persson, Anders, Lundh, Olle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545103/
https://www.ncbi.nlm.nih.gov/pubmed/33033319
http://dx.doi.org/10.1038/s41598-020-73805-7
_version_ 1783591964339339264
author Tomkus, Vidmantas
Girdauskas, Valdas
Dudutis, Juozas
Gečys, Paulius
Stankevič, Valdemar
Račiukaitis, Gediminas
Gallardo González, Isabel
Guénot, Diego
Svensson, Jonas Björklund
Persson, Anders
Lundh, Olle
author_facet Tomkus, Vidmantas
Girdauskas, Valdas
Dudutis, Juozas
Gečys, Paulius
Stankevič, Valdemar
Račiukaitis, Gediminas
Gallardo González, Isabel
Guénot, Diego
Svensson, Jonas Björklund
Persson, Anders
Lundh, Olle
author_sort Tomkus, Vidmantas
collection PubMed
description Laser Plasma Wakefield Accelerated (LWFA) electron beams and efficiency of betatron X-ray sources is studied using laser micromachined supersonic gas jet nozzle arrays. Separate sections of the target are used for the injection, acceleration and enhancement of electron oscillation. In this report, we present the results of LWFA and X-ray generation using dynamic gas density grid built by shock-waves of colliding jets. The experiment was done with the 40 TW, 35 fs laser at the Lund Laser Centre. Electron energies of 30–150 MeV and 1.0 × 10(8)–5.5 × 10(8) photons per shot of betatron radiation have been measured. The implementation of the betatron source with separate regions of LWFA and plasma density grid raised the efficiency of X-ray generation and increased the number of photons per shot by a factor of 2–3 relative to a single-jet gas target source.
format Online
Article
Text
id pubmed-7545103
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75451032020-10-14 Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets Tomkus, Vidmantas Girdauskas, Valdas Dudutis, Juozas Gečys, Paulius Stankevič, Valdemar Račiukaitis, Gediminas Gallardo González, Isabel Guénot, Diego Svensson, Jonas Björklund Persson, Anders Lundh, Olle Sci Rep Article Laser Plasma Wakefield Accelerated (LWFA) electron beams and efficiency of betatron X-ray sources is studied using laser micromachined supersonic gas jet nozzle arrays. Separate sections of the target are used for the injection, acceleration and enhancement of electron oscillation. In this report, we present the results of LWFA and X-ray generation using dynamic gas density grid built by shock-waves of colliding jets. The experiment was done with the 40 TW, 35 fs laser at the Lund Laser Centre. Electron energies of 30–150 MeV and 1.0 × 10(8)–5.5 × 10(8) photons per shot of betatron radiation have been measured. The implementation of the betatron source with separate regions of LWFA and plasma density grid raised the efficiency of X-ray generation and increased the number of photons per shot by a factor of 2–3 relative to a single-jet gas target source. Nature Publishing Group UK 2020-10-08 /pmc/articles/PMC7545103/ /pubmed/33033319 http://dx.doi.org/10.1038/s41598-020-73805-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Tomkus, Vidmantas
Girdauskas, Valdas
Dudutis, Juozas
Gečys, Paulius
Stankevič, Valdemar
Račiukaitis, Gediminas
Gallardo González, Isabel
Guénot, Diego
Svensson, Jonas Björklund
Persson, Anders
Lundh, Olle
Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets
title Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets
title_full Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets
title_fullStr Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets
title_full_unstemmed Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets
title_short Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets
title_sort laser wakefield accelerated electron beams and betatron radiation from multijet gas targets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545103/
https://www.ncbi.nlm.nih.gov/pubmed/33033319
http://dx.doi.org/10.1038/s41598-020-73805-7
work_keys_str_mv AT tomkusvidmantas laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT girdauskasvaldas laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT dudutisjuozas laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT gecyspaulius laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT stankevicvaldemar laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT raciukaitisgediminas laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT gallardogonzalezisabel laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT guenotdiego laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT svenssonjonasbjorklund laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT perssonanders laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets
AT lundholle laserwakefieldacceleratedelectronbeamsandbetatronradiationfrommultijetgastargets