Cargando…

Spectral weight reduction of two-dimensional electron gases at oxide surfaces across the ferroelectric transition

The discovery of a two-dimensional electron gas (2DEG) at the [Formula: see text] interface has set a new platform for all-oxide electronics which could potentially exhibit the interplay among charge, spin, orbital, superconductivity, ferromagnetism and ferroelectricity. In this work, by using angle...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaiban, P., Lu, M.-H., Eknapakul, T., Chaiyachad, S., Yao, S. H., Pisitpipathsin, N., Unruan, M., Siriroj, S., He, R.-H., Mo, S.-K., Watcharapasorn, A., Yimnirun, R., Tokura, Y., Shen, Z.-X., Hwang, H. Y., Maensiri, S., Meevasana, W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545169/
https://www.ncbi.nlm.nih.gov/pubmed/33033329
http://dx.doi.org/10.1038/s41598-020-73657-1
Descripción
Sumario:The discovery of a two-dimensional electron gas (2DEG) at the [Formula: see text] interface has set a new platform for all-oxide electronics which could potentially exhibit the interplay among charge, spin, orbital, superconductivity, ferromagnetism and ferroelectricity. In this work, by using angle-resolved photoemission spectroscopy and conductivity measurement, we found the reduction of 2DEGs and the changes of the conductivity nature of some ferroelectric oxides including insulating Nb-lightly-substituted [Formula: see text] , [Formula: see text] (BTO) and (Ca,Zr)-doped BTO across paraelectric-ferroelectric transition. We propose that these behaviours could be due to the increase of space-charge screening potential at the 2DEG/ferroelectric regions which is a result of the realignment of ferroelectric polarisation upon light irradiation. This finding suggests an opportunity for controlling the 2DEG at a bare oxide surface (instead of interfacial system) by using both light and ferroelectricity.