Cargando…

Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes

Cystic fibrosis is a chronic lung disease requiring frequent lung-function monitoring to track acute respiratory events (pulmonary exacerbations). The association between lung-function trajectory and time-to-first exacerbation can be characterized using joint longitudinal-survival modeling. Joint mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrinopoulou, Eleni-Rosalina, Nasserinejad, Kazem, Szczesniak, Rhonda, Rizopoulos, Dimitris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545534/
https://www.ncbi.nlm.nih.gov/pubmed/32438854
http://dx.doi.org/10.1177/0962280220924680
_version_ 1783592046934622208
author Andrinopoulou, Eleni-Rosalina
Nasserinejad, Kazem
Szczesniak, Rhonda
Rizopoulos, Dimitris
author_facet Andrinopoulou, Eleni-Rosalina
Nasserinejad, Kazem
Szczesniak, Rhonda
Rizopoulos, Dimitris
author_sort Andrinopoulou, Eleni-Rosalina
collection PubMed
description Cystic fibrosis is a chronic lung disease requiring frequent lung-function monitoring to track acute respiratory events (pulmonary exacerbations). The association between lung-function trajectory and time-to-first exacerbation can be characterized using joint longitudinal-survival modeling. Joint models specified through the shared parameter framework quantify the strength of association between such outcomes but do not incorporate latent sub-populations reflective of heterogeneous disease progression. Conversely, latent class joint models explicitly postulate the existence of sub-populations but do not directly quantify the strength of association. Furthermore, choosing the optimal number of classes using established metrics like deviance information criterion is computationally intensive in complex models. To overcome these limitations, we integrate latent classes in the shared parameter joint model through a fully Bayesian approach. To choose the optimal number of classes, we construct a mixture model assuming more latent classes than present in the data, thereby asymptotically “emptying” superfluous latent classes, provided the Dirichlet prior on class proportions is sufficiently uninformative. Model properties are evaluated in simulation studies. Application to data from the US Cystic Fibrosis Registry supports the existence of three sub-populations corresponding to lung-function trajectories with high initial forced expiratory volume in 1 s (FEV(1)), rapid FEV(1) decline, and low but steady FEV(1) progression. The association between FEV(1) and hazard of exacerbation was negative in each class, but magnitude varied.
format Online
Article
Text
id pubmed-7545534
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-75455342020-10-30 Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes Andrinopoulou, Eleni-Rosalina Nasserinejad, Kazem Szczesniak, Rhonda Rizopoulos, Dimitris Stat Methods Med Res Articles Cystic fibrosis is a chronic lung disease requiring frequent lung-function monitoring to track acute respiratory events (pulmonary exacerbations). The association between lung-function trajectory and time-to-first exacerbation can be characterized using joint longitudinal-survival modeling. Joint models specified through the shared parameter framework quantify the strength of association between such outcomes but do not incorporate latent sub-populations reflective of heterogeneous disease progression. Conversely, latent class joint models explicitly postulate the existence of sub-populations but do not directly quantify the strength of association. Furthermore, choosing the optimal number of classes using established metrics like deviance information criterion is computationally intensive in complex models. To overcome these limitations, we integrate latent classes in the shared parameter joint model through a fully Bayesian approach. To choose the optimal number of classes, we construct a mixture model assuming more latent classes than present in the data, thereby asymptotically “emptying” superfluous latent classes, provided the Dirichlet prior on class proportions is sufficiently uninformative. Model properties are evaluated in simulation studies. Application to data from the US Cystic Fibrosis Registry supports the existence of three sub-populations corresponding to lung-function trajectories with high initial forced expiratory volume in 1 s (FEV(1)), rapid FEV(1) decline, and low but steady FEV(1) progression. The association between FEV(1) and hazard of exacerbation was negative in each class, but magnitude varied. SAGE Publications 2020-05-21 2020-11 /pmc/articles/PMC7545534/ /pubmed/32438854 http://dx.doi.org/10.1177/0962280220924680 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Articles
Andrinopoulou, Eleni-Rosalina
Nasserinejad, Kazem
Szczesniak, Rhonda
Rizopoulos, Dimitris
Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes
title Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes
title_full Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes
title_fullStr Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes
title_full_unstemmed Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes
title_short Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes
title_sort integrating latent classes in the bayesian shared parameter joint model of longitudinal and survival outcomes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545534/
https://www.ncbi.nlm.nih.gov/pubmed/32438854
http://dx.doi.org/10.1177/0962280220924680
work_keys_str_mv AT andrinopoulouelenirosalina integratinglatentclassesinthebayesiansharedparameterjointmodeloflongitudinalandsurvivaloutcomes
AT nasserinejadkazem integratinglatentclassesinthebayesiansharedparameterjointmodeloflongitudinalandsurvivaloutcomes
AT szczesniakrhonda integratinglatentclassesinthebayesiansharedparameterjointmodeloflongitudinalandsurvivaloutcomes
AT rizopoulosdimitris integratinglatentclassesinthebayesiansharedparameterjointmodeloflongitudinalandsurvivaloutcomes