Cargando…

Clinical efficacy of short-term pre-operative halo-pelvic traction in the treatment of severe spinal deformities complicated with respiratory dysfunction

BACKGROUND: Halo traction has been used as an adjunctive method in the treatment of severe spinal deformities. But there are few reports on the clinical efficacy of halo-pelvic traction (HPT) in the treatment of severe spinal deformities complicated with respiratory dysfunction. This study was to ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Longtao, Xu, Beiyu, Li, Chunde, Wang, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545553/
https://www.ncbi.nlm.nih.gov/pubmed/33032558
http://dx.doi.org/10.1186/s12891-020-03700-9
Descripción
Sumario:BACKGROUND: Halo traction has been used as an adjunctive method in the treatment of severe spinal deformities. But there are few reports on the clinical efficacy of halo-pelvic traction (HPT) in the treatment of severe spinal deformities complicated with respiratory dysfunction. This study was to evaluate the clinical efficacy and complications associated with pre-operative HPT in the treatment of severe spinal deformities with respiratory dysfunction. METHODS: Thirty patients with severe spinal deformities complicated with respiratory dysfunction treated with short-term pre-operative HPT were retrospectively reviewed. Inclusion criteria were: (1) patients with severe kyphoscoliosis (coronal Cobb angle or kyphosis angle ≥100°) and respiratory failure, (2) patients undergoing HPT until posterior fusion surgery. All patients underwent general anesthesia for HPT application, which the pelvic ring used in this study was a half-ring, and the rods were all placed on the anterolateral side of the truck. RESULTS: The major coronal curve scoliosis averaged 116.00 ± 16.70° and was reduced to 63.23 ± 14.00° after HPT, 46.33 ± 10.70° after surgery. The major kyphosis was 102.40 ± 27.67° and was reduced to 52.23 ± 14.16° after HPT, 42.0 ± 11.92° after surgery. A significantly increased FVC was observed after HPT (p < 0.001), with a significantly improved FVC% (p < 0.001). Similarly, a significantly increased FEV1 was also observed (p < 0.001), with a significantly improved FEV1% (p < 0.001). CONCLUSION: This study indicated that the modified HPT could be used to help patients with severe spinal deformities complicated with respiratory dysfunction achieve significant correction in both the coronal and sagittal deformities during the pre-operative treatment period along with improved respiratory function and in the absence of severe complications.