Cargando…
Gene correlation network analysis to identify regulatory factors in sepsis
BACKGROUND AND OBJECTIVES: Sepsis is a leading cause of mortality and morbidity in the intensive care unit. Regulatory mechanisms underlying the disease progression and prognosis are largely unknown. The study aimed to identify master regulators of mortality-related modules, providing potential ther...
Autores principales: | Zhang, Zhongheng, Chen, Lin, Xu, Ping, Xing, Lifeng, Hong, Yucai, Chen, Pengpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545567/ https://www.ncbi.nlm.nih.gov/pubmed/33032623 http://dx.doi.org/10.1186/s12967-020-02561-z |
Ejemplares similares
-
Deep learning-based clustering robustly identified two classes of sepsis with both prognostic and predictive values
por: Zhang, Zhongheng, et al.
Publicado: (2020) -
The landscape of isoform switches in sepsis: a multicenter cohort study
por: Chen, Lin, et al.
Publicado: (2022) -
Single-cell transcriptome profiling reveals heterogeneous neutrophils with prognostic values in sepsis
por: Hong, Yucai, et al.
Publicado: (2022) -
Development of a novel score for the prediction of hospital mortality in patients with severe sepsis: the use of electronic healthcare records with LASSO regression
por: Zhang, Zhongheng, et al.
Publicado: (2017) -
Individualized Mechanical power-based ventilation strategy for acute respiratory failure formalized by finite mixture modeling and dynamic treatment regimen
por: Hong, Yucai, et al.
Publicado: (2021)